


## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3845119/publications.pdf Version: 2024-02-01



VANC VI

| #  | Article                                                                                                                                                                                                                           | lF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Ssâ€Rhs1, a secretory Rhs repeatâ€containing protein, is required for the virulence of <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2017, 18, 1052-1061.                                                          | 4.2  | 59        |
| 2  | An effector of a necrotrophic fungal pathogen targets the calciumâ€sensing receptor in chloroplasts<br>to inhibit host resistance. Molecular Plant Pathology, 2020, 21, 686-701.                                                  | 4.2  | 55        |
| 3  | Ss-Sl2, a Novel Cell Wall Protein with PAN Modules, Is Essential for Sclerotial Development and<br>Cellular Integrity of Sclerotinia sclerotiorum. PLoS ONE, 2012, 7, e34962.                                                     | 2.5  | 44        |
| 4  | Ss-Bi1 encodes a putative BAX inhibitor-1 protein that is required for full virulence of Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 2015, 90, 115-122.                                                | 2.5  | 40        |
| 5  | Disruption of the Gene Encoding Endo-β-1, 4-Xylanase Affects the Growth and Virulence of Sclerotinia sclerotiorum. Frontiers in Microbiology, 2016, 7, 1787.                                                                      | 3.5  | 35        |
| 6  | Simultaneous Transcriptome Analysis of Host and Pathogen Highlights the Interaction Between<br><i>Brassica oleracea</i> and <i>Sclerotinia sclerotiorum</i> . Phytopathology, 2019, 109, 542-550.                                 | 2.2  | 26        |
| 7  | Sclerotinia sclerotiorum Thioredoxin Reductase Is Required for Oxidative Stress Tolerance,<br>Virulence, and Sclerotial Development. Frontiers in Microbiology, 2019, 10, 233.                                                    | 3.5  | 24        |
| 8  | Sclerotinia sclerotiorum utilizes host-derived copper for ROS detoxification and infection. PLoS Pathogens, 2020, 16, e1008919.                                                                                                   | 4.7  | 23        |
| 9  | Quantitative Proteomics Reveals the Defense Response of Wheat against Puccinia striiformis f. sp.<br>tritici. Scientific Reports, 2016, 6, 34261.                                                                                 | 3.3  | 21        |
| 10 | <i>Sclerotinia sclerotiorum Thioredoxin1 (SsTrx1)</i> is required for pathogenicity and oxidative stress tolerance. Molecular Plant Pathology, 2021, 22, 1413-1426.                                                               | 4.2  | 20        |
| 11 | Survival factor 1 contributes to the oxidative stress response and is required for full virulence of <i>Sclerotinia sclerotiorum</i> . Molecular Plant Pathology, 2019, 20, 895-906.                                              | 4.2  | 17        |
| 12 | SsCat2 encodes a catalase that is critical for the antioxidant response, Qol fungicide sensitivity, and pathogenicity of Sclerotinia sclerotiorum. Fungal Genetics and Biology, 2021, 149, 103530.                                | 2.1  | 13        |
| 13 | Population Structure and Aggressiveness of <i>Sclerotinia sclerotiorum</i> From Rapeseed<br>( <i>Brassica napus</i> ) in Chongqing City. Plant Disease, 2020, 104, 1201-1206.                                                     | 1.4  | 11        |
| 14 | In Silico Identification of the Full Complement of Subtilase-Encoding Genes and Characterization of the Role of <i>TaSBT1.7</i> in Resistance Against Stripe Rust in Wheat. Phytopathology, 2021, 111, 398-407.                   | 2.2  | 8         |
| 15 | Integrated Metabolo-transcriptomics Reveals the Defense Response of Homogentisic Acid in Wheat<br>against <i>Puccinia striiformis</i> f. sp. <i>tritici</i> . Journal of Agricultural and Food Chemistry,<br>2022, 70, 3719-3729. | 5.2  | 8         |
| 16 | Genetic Diversity and Population Structure of the Rice False Smut Pathogen <i>Ustilaginoidea<br/>virens</i> in the Sichuan–Chongqing Region. Plant Disease, 2022, 106, 93-100.                                                    | 1.4  | 4         |
| 17 | Augmenting the Precise Targeting of Antimicrobial Peptides (AMPs) and AMPâ€Based Drug Delivery via<br>Affinityâ€Filtering Strategy. Advanced Functional Materials, 0, , 2111344.                                                  | 14.9 | 3         |