Oleg V Larionov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844685/publications.pdf

Version: 2024-02-01

76 papers 3,699 citations

36 h-index 59 g-index

92 all docs 92 docs citations 92 times ranked 3459 citing authors

#	Article	IF	Citations
1	Functional group divergence and the structural basis of acridine photocatalysis revealed by direct decarboxysulfonylation. Chemical Science, 2022, 13, 4170-4179.	7.4	46
2	N-Heterocyclic Carbene-Photocatalyzed Tricomponent Regioselective 1,2-Diacylation of Alkenes Illuminates the Mechanistic Details of the Electron Donor–Acceptor Complex-Mediated Radical Relay Processes /b>. ACS Catalysis, 2022, 12, 285-294.	11.2	41
3	Tricomponent Decarboxysulfonylative Cross-coupling Facilitates Direct Construction of Aryl Sulfones and Reveals a Mechanistic Dualism in the Acridine/Copper Photocatalytic System. ACS Catalysis, 2022, 12, 8729-8739.	11.2	16
4	$\langle i > Z < i > -S$ elective Dienylation Enables Stereodivergent Construction of Dienes and Unravels a Ligand-Driven Mechanistic Dichotomy. ACS Catalysis, 2021, 11, 1042-1052.	11.2	14
5	Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chemical Science, 2021, 12, 6429-6436.	7.4	39
6	Photoinduced C(sp ³)â€"H sulfination empowers the direct and chemoselective introduction of the sulfonyl group. Chemical Science, 2021, 12, 13914-13921.	7.4	30
7	A Computational Approach to Explore the Interaction of Semisynthetic Nitrogenous Heterocyclic Compounds with the SARS-CoV-2 Main Protease. Biomolecules, 2021, 11, 18.	4.0	7
8	Bond Memory in Dynamically Determined Stereoselectivity. Journal of the American Chemical Society, 2020, 142, 85-88.	13.7	10
9	Visible Light-Induced Borylation of C–O, C–N, and C–X Bonds. Journal of the American Chemical Society, 2020, 142, 1603-1613.	13.7	111
10	Antileishmanial activity of a new chloroquine analog in an animal model of Leishmania panamensis infection. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 56-61.	3.4	8
11	Acridine Photocatalysis: Insights into the Mechanism and Development of a Dual-Catalytic Direct Decarboxylative Conjugate Addition. ACS Catalysis, 2020, 10, 11448-11457.	11.2	41
12	Deoxygenative α-alkylation and α-arylation of 1,2-dicarbonyls. Chemical Science, 2020, 11, 9101-9108.	7.4	14
13	Visible‣ightâ€Enabled Direct Decarboxylative Nâ€Alkylation. Angewandte Chemie, 2020, 132, 7995-8001.	2.0	10
14	Visibleâ€Lightâ€Enabled Direct Decarboxylative Nâ€Alkylation. Angewandte Chemie - International Edition, 2020, 59, 7921-7927.	13.8	72
15	Zinc(II) complexes of a versatile heptadentate ligand as phosphohydrolase structural and functional mimics. Inorganica Chimica Acta, 2019, 497, 119077.	2.4	3
16	Alkene Synthesis by Photocatalytic Chemoenzymatically Compatible Dehydrodecarboxylation of Carboxylic Acids and Biomass. ACS Catalysis, 2019, 9, 9485-9498.	11.2	74
17	Decarboxylative Phosphine Synthesis: Insights into the Catalytic, Autocatalytic, and Inhibitory Roles of Additives and Intermediates. ACS Catalysis, 2019, 9, 9764-9774.	11.2	38
18	Hexahydropyrrolo[2,3- <i>b</i>)i>lindole Compounds as Potential Therapeutics for Alzheimer's Disease. ACS Chemical Neuroscience, 2019, 10, 4250-4263.	3.5	9

#	Article	IF	CITATIONS
19	Rapid and Chemodivergent Synthesis of N-Heterocyclic Sulfones and Sulfides: Mechanistic and Computational Details of the Persulfate-Initiated Catalysis. ACS Catalysis, 2019, 9, 4015-4024.	11.2	22
20	Highly stereoselective and catalytic desulfitative C O and C I dienylation with sulfolenes: The importance of basic additives. Tetrahedron, 2019, 75, 3258-3264.	1.9	15
21	Organoboron chemistry comes to light: Recent advances in photoinduced synthetic approaches to organoboron compounds. Tetrahedron, 2019, 75, 584-602.	1.9	41
22	Efficient synthesis of 3-sulfolenes from allylic alcohols and 1,3-dienes enabled by sodium metabisulfite as a sulfur dioxide equivalent. Organic and Biomolecular Chemistry, 2018, 16, 3605-3609.	2.8	25
23	Highly Regio- and Stereoselective Catalytic Synthesis of Conjugated Dienes and Polyenes. Journal of the American Chemical Society, 2018, 140, 8434-8438.	13.7	68
24	Antiviral Activity of Novel Quinoline Derivatives against Dengue Virus Serotype 2. Molecules, 2018, 23, 672.	3.8	71
25	A Radical New Look for Alkene Carboboration. CheM, 2018, 4, 1205-1207.	11.7	9
26	Identification of Inhibitors of CD36-Amyloid Beta Binding as Potential Agents for Alzheimer's Disease. ACS Chemical Neuroscience, 2017, 8, 1232-1241.	3.5	35
27	Metal- and additive-free photoinduced borylation of haloarenes. Nature Protocols, 2017, 12, 604-610.	12.0	29
28	Transition Metal-Catalyzed Câ€"H Functionalization of Heterocyclic N-Oxides. Topics in Heterocyclic Chemistry, 2017, , 59-84.	0.2	13
29	Assessment of Novel Curcumin Derivatives as Potent Inhibitors of Inflammation and Amyloid-β Aggregation in Alzheimer's Disease. Journal of Alzheimer's Disease, 2017, 60, S59-S68.	2.6	35
30	Cytotoxicity and Mechanism of Action of the Marine-Derived Fungal Metabolite Trichodermamide B and Synthetic Analogues. Journal of Natural Products, 2017, 80, 676-683.	3.0	36
31	Photoinduced Carboborative Ring Contraction Enables Regio- and Stereoselective Synthesis of Multiply Substituted Five-Membered Carbocycles and Heterocycles. Journal of the American Chemical Society, 2017, 139, 11365-11368.	13.7	24
32	Mechanistic insights into the potassium tert-butoxide-mediated synthesis of N-heterobiaryls. Chemical Communications, 2016, 52, 9945-9948.	4.1	37
33	Organocatalytic Synthesis of Methylene-Bridged <i>N</i> Heterobiaryls. Organic Letters, 2016, 18, 5808-5811.	4.6	10
34	Additive- and Metal-Free, Predictably 1,2- and 1,3-Regioselective, Photoinduced Dual C–H/C–X Borylation of Haloarenes. Journal of the American Chemical Society, 2016, 138, 8408-8411.	13.7	113
35	Insights into the structural patterns of the antileishmanial activity of bi- and tricyclic N-heterocycles. Organic and Biomolecular Chemistry, 2016, 14, 7053-7060.	2.8	12
36	Scalable, Metal- and Additive-Free, Photoinduced Borylation of Haloarenes and Quaternary Arylammonium Salts. Journal of the American Chemical Society, 2016, 138, 2985-2988.	13.7	239

#	Article	IF	CITATIONS
37	Concise Total Synthesis of Trichodermamides A, B, and C Enabled by an Efficient Construction of the 1,2-Oxazadecaline Core. Journal of the American Chemical Society, 2015, 137, 8050-8053.	13.7	31
38	Experimental and mechanistic analysis of the palladium-catalyzed oxidative C8-selective C–H homocoupling of quinoline N-oxides. Chemical Communications, 2015, 51, 9507-9510.	4.1	62
39	Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron, 2015, 71, 8683-8716.	1.9	135
40	Palladium-Catalyzed C8-Selective C–H Arylation of Quinoline ⟨i>N⟨ i>-Oxides: Insights into the Electronic, Steric, and Solvation Effects on the Site Selectivity by Mechanistic and DFT Computational Studies. ACS Catalysis, 2015, 5, 167-175.	11.2	127
41	Heterocyclic N-Oxides - An Emerging Class of Therapeutic Agents. Current Medicinal Chemistry, 2015, 22, 2819-2857.	2.4	116
42	Synthetic and mechanistic aspects of the regioselective base-mediated reaction of perfluoroalkyl- and perfluoroarylsilanes with heterocyclic N-oxides. Organic and Biomolecular Chemistry, 2014, 12, 6190-6199.	2.8	68
43	Coupling of deoxyribonucleic acid to solid supports using 3′ terminal ribose incorporation. Journal of Chromatography A, 2014, 1339, 73-79.	3.7	2
44	Direct, Catalytic, and Regioselective Synthesis of 2-Alkyl-, Aryl-, and Alkenyl-Substituted <i>N</i> -Heterocycles from <i>N</i> -Oxides. Organic Letters, 2014, 16, 864-867.	4.6	121
45	Insights into the mechanistic and synthetic aspects of the Mo/P-catalyzed oxidation of N-heterocycles. Organic and Biomolecular Chemistry, 2014, 12, 3026-3036.	2.8	37
46	Straightforward Access to Hexahydropyrrolo[2,3â€ <i>b</i>]indole Core by a Regioselective C3â€Azo Coupling Reaction of Arenediazonium Compounds with Tryptamines. European Journal of Organic Chemistry, 2014, 2014, 3662-3670.	2.4	17
47	Three-component reaction of small-ring cyclic amines with arynes and acetonitrile. Chemical Communications, 2013, 49, 6558.	4.1	62
48	Catalytic Diastereo―and Enantioselective Annulations between Transient Nitrosoalkenes and Indoles. Chemistry - A European Journal, 2012, 18, 16612-16615.	3.3	52
49	Synthesis and biological activity of simplified belactosin C analogues. Organic and Biomolecular Chemistry, 2012, 10, 6363.	2.8	16
50	Synthesis and biological activity of optimized belactosin C congeners. Organic and Biomolecular Chemistry, 2011, 9, 7791.	2.8	22
51	Ni(II)-Catalyzed Enantioselective Conjugate Addition of Acetylenes to $\hat{l}_{\pm},\hat{l}^{2}$ -Enones. Organic Letters, 2010, 12, 300-302.	4.6	57
52	Oligosubstituted Pyrroles Directly from Substituted Methyl Isocyanides and Acetylenes. Chemistry - A European Journal, 2009, 15, 227-236.	3.3	102
53	Total Synthesis and Biological Evaluation of Amphidinolide V and Analogues. Chemistry - A European Journal, 2009, 15, 4011-4029.	3.3	91
54	The effect of new proteasome inhibitors, belactosin A and C, on protein metabolism in isolated rat skeletal muscle. Journal of Physiology and Biochemistry, 2009, 65, 137-146.	3.0	12

#	Article	IF	CITATIONS
55	An Unconventional Approach to the Enantioselective Synthesis of Caryophylloids. Journal of the American Chemical Society, 2008, 130, 2954-2955.	13.7	72
56	What is Amphidinolideâ€V? Report on a Likely Conquest. Angewandte Chemie - International Edition, 2007, 46, 5545-5548.	13.8	91
57	GaCl ₃ -Catalyzed Insertion of Diazene Derivatives into the Cyclopropane Ring ¹ . Journal of Organic Chemistry, 2007, 72, 7504-7510.	3.2	96
58	Versatile Direct Synthesis of Oligosubstituted Pyrroles by Cycloaddition of \hat{l}_{\pm} -Metalated Isocyanides to Acetylenes ChemInform, 2006, 37, no.	0.0	0
59	Practical Syntheses of Both Enantiomers of Cyclopropylglycine and of Methyl 2-Cyclopropyl-2-N-Boc-iminoacetate. Advanced Synthesis and Catalysis, 2006, 348, 1071-1078.	4.3	9
60	Diastereoselective Synthesis of trans-2-Substituted Cyclopropylamines. Synlett, 2006, 2006, 3164-3166.	1.8	0
61	Convenient Access to 2-Arylpyrroles from 2-Lithio-N,N-dibenzylcyclopropylamine and Nitriles. Synlett, 2006, 2006, 2339-2341.	1.8	2
62	Ln(OTf)3-Catalyzed Insertion of Aryl Isocyanides into the Cyclopropane Ring. Synthesis, 2006, 2006, 3542-3546.	2.3	4
63	Inhibitor-binding mode of homobelactosin C to proteasomes: New insights into class I MHC ligand generation. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4576-4579.	7.1	74
64	Versatile Direct Synthesis of Oligosubstituted Pyrroles by Cycloaddition of α-Metalated Isocyanides to Acetylenes. Angewandte Chemie - International Edition, 2005, 44, 5664-5667.	13.8	220
65	Facile Preparation of tert-Butyl 1-tert-Butoxycarbonylaminocyclopent-3-enecarboxylate from Inexpensive Starting Materials. Synthesis, 2005, 2005, 158-160.	2.3	0
66	(1′S,2R,3S,4S)-Ethyl 2-hydroxy-4-methyl-3-(1′-phenylethylcarbamoyl)hexanoate. Acta Crystallographica Section E: Structure Reports Online, 2004, 60, o681-o683.	0.2	1
67	Enantioselective Total Syntheses of Belactosin A, Belactosin C, and Its Homoanalogueâ€. Organic Letters, 2004, 6, 2153-2156.	4.6	54
68	Productive Asymmetric Synthesis of All Four Diastereomers of 3-(trans-2-Nitrocyclopropyl)alanine from Glycine with (S)- or (R)-2-[(N-Benzylprolyl)amino]benzophenone as a Reusable Chiral Auxiliary. European Journal of Organic Chemistry, 2003, 2003, 869-877.	2.4	34
69	Photoelectron Spectra and Electronic Structures of Some Acceptor-Substituted Cyclopropanes: Linear Correlation of Substituent Effects on MO Energies with Molecular Structures. Chemistry - A European Journal, 2003, 9, 2953-2962.	3.3	12
70	Synthesis of \hat{l}_{\pm} -Amino Acids via Asymmetric Phase Transfer-Catalyzed Alkylation of Achiral Nickel(II) Complexes of Glycine-Derived Schiff Bases. Journal of the American Chemical Society, 2003, 125, 12860-12871.	13.7	101
71	Rational synthesis of all the four stereoisomers of 3-(trans-2-aminocyclopropyl)alanine. Mendeleev Communications, 2003, 13, 199-200.	1.6	12
72	New Protocol for EfficientN-Chlorinations of Amides and Carbamates. Synthesis, 2003, 2003, 1916-1919.	2.3	2

#	Article	lF	CITATION
73	Highly Efficient Catalytic Synthesis ofl±-Amino Acids under Phase-Transfer Conditions with a Novel Catalyst/Substrate Pair. Angewandte Chemie - International Edition, 2001, 40, 1948-1951.	13.8	78
74	Asymmetric PTC C-Alkylation Catalyzed by Chiral Derivatives of Tartaric Acid and Aminophenols. Synthesis of (R)- and (S)-α-Methyl Amino Acids. Journal of Organic Chemistry, 2000, 65, 7041-7048.	3.2	72
75	Asymmetric alkylation catalyzed by chiral alkali metal alkoxides of TADDOL. Synthesis of α-methyl amino acids. Russian Chemical Bulletin, 1999, 48, 917-923.	1.5	10
76	Asymmetric PTC C-alkylation mediated by TADDOL—novel route to enantiomerically enriched α-alkyl-α-amino acids. Tetrahedron: Asymmetry, 1998, 9, 851-857.	1.8	96