Yubing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3844552/publications.pdf Version: 2024-02-01

YURING HUANG

#	Article	IF	CITATIONS
1	NBS-promoted halosulfonylation of terminal alkynes: highly regio- and stereoselective synthesis of (E)-β-halo vinylsulfones. Organic Chemistry Frontiers, 2014, 1, 361-364.	4.5	64
2	Copper-catalyzed cyanothiolation to incorporate a sulfur-substituted quaternary carbon center. Chemical Science, 2017, 8, 7047-7051.	7.4	44
3	Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon–Carbon Bond Cleavage Using Molecular Oxygen. Journal of Organic Chemistry, 2018, 83, 5458-5466.	3.2	44
4	Controllable assembly of the benzothiazole framework using a Cî€,C triple bond as a one-carbon synthon. Chemical Communications, 2018, 54, 1742-1745.	4.1	44
5	Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of <i>N</i> -Tosylhydrazones and β-Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. Journal of Organic Chemistry, 2016, 81, 5014-5020.	3.2	41
6	Selective Construction of 2-Substituted Benzothiazoles from <i>o</i> -lodoaniline Derivatives S ₈ and <i>N</i> -Tosylhydrazones. Journal of Organic Chemistry, 2018, 83, 2460-2466.	3.2	35
7	Electrochemical Synthesis Strategy for C _{vinyl} -CF ₃ Compounds through Decarboxylative Trifluoromethylation. Journal of Organic Chemistry, 2019, 84, 5980-5986.	3.2	35
8	Copper-Catalyzed Cyanation of <i>N</i> -Tosylhydrazones with Thiocyanate Salt as the "CN―Source. Journal of Organic Chemistry, 2017, 82, 7621-7627.	3.2	34
9	Electrochemical vicinal aminotrifluoromethylation of alkenes: high regioselective acquisition of β-trifluoromethylamines. Organic and Biomolecular Chemistry, 2019, 17, 5014-5020.	2.8	34
10	Metal-free chemoselective hydrogenation of unsaturated carbon–carbon bonds <i>via</i> cathodic reduction. Organic Chemistry Frontiers, 2020, 7, 1817-1822.	4.5	34
11	Palladium-Catalyzed Denitrogenative Synthesis of Aryl Ketones from Arylhydrazines and Nitriles Using O2 as Sole Oxidant. Journal of Organic Chemistry, 2017, 82, 2211-2218.	3.2	30
12	Palladium-Catalyzed Synthesis of 1 <i>H</i> -Indenes and Phthalimides via Isocyanide Insertion. Organic Letters, 2017, 19, 5818-5821.	4.6	29
13	Direct access to bis-S-heterocycles <i>via</i> copper-catalyzed three component tandem cyclization using S ₈ as a sulfur source. Organic and Biomolecular Chemistry, 2019, 17, 3424-3432.	2.8	28
14	NH ₄ I-Promoted and H ₂ O-Controlled Intermolecular Bis-sulfenylation and Hydroxysulfenylation of Alkenes via a Radical Process. Journal of Organic Chemistry, 2019, 84, 8750-8758.	3.2	27
15	Access to Substituted Thiophenes through Xanthate-Mediated Vinyl C(sp ²)-Br Bond Cleavage and Heterocyclization of Bromoenynes. Journal of Organic Chemistry, 2020, 85, 13037-13049.	3.2	19
16	Access to 2-Aroylthienothiazoles via C–H/N–O Bond Functionalization of Oximes. Organic Letters, 2019, 21, 9976-9980.	4.6	18
17	Direct synthesis of novel quinoxaline derivatives <i>via</i> palladium-catalyzed reductive annulation of catechols and nitroarylamines. Chemical Communications, 2020, 56, 5997-6000.	4.1	17
18	Copper-Catalyzed Aerobic Oxidative [3+2] Annulation for the Synthesis of 5-Amino/Imino-Substituted 1,2,4-Thiadiazoles through C–N/N–S Bond Formation. Journal of Organic Chemistry, 2018, 83, 9334-9343.	3.2	15

YUBING HUANG

#	Article	IF	CITATIONS
19	Direct electrochemical reductive amination between aldehydes and amines with a H/D-donor solvent. Organic and Biomolecular Chemistry, 2020, 18, 5832-5837.	2.8	15
20	Synthesis of <i>N-</i> Biheteroarenes via Acceptorless Dehydrogenative Coupling of Benzocyclic Amines with Indole Derivatives. Journal of Organic Chemistry, 2019, 84, 3559-3565.	3.2	14
21	Access to 4-substituted isothiazoles through three-component cascade annulation and their application in C–H activation. Chemical Communications, 2020, 56, 5763-5766.	4.1	14
22	Cathodic Regioselective Coupling of Unactivated Aliphatic Ketones with Alkenes. Organic Letters, 2022, 24, 1412-1417.	4.6	13
23	Access to Thienopyridine and Thienoquinoline Derivatives via Site-Selective C–H Bond Functionalization and Annulation. Organic Letters, 2022, 24, 3167-3172.	4.6	13
24	Electrochemical Desulfurative Cyclization Accessing Oxazol-2-amine Derivatives via Intermolecular C–N/C–O Bond Formation. Organic Letters, 2021, 23, 1016-1020.	4.6	11
25	Facile Synthesis of π-Conjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 10453-10464.	3.2	10
26	Metal-Free Oxidative Esterification of Ketones and Potassium Xanthates: Selective Synthesis of α-Ketoesters and Esters. Journal of Organic Chemistry, 2020, 85, 5220-5230.	3.2	10
27	Transition Metalâ€Free Synthesis of Substituted Isothiazoles via Threeâ€Component Annulation of Alkynones, Xanthate and NH 4 I. Advanced Synthesis and Catalysis, 2021, 363, 1059-1068.	4.3	10
28	Synthesis of Deuterated (<i>E</i>)-Alkene through Xanthate-Mediated Hydrogen–Deuterium Exchange Reactions. Organic Letters, 2021, 23, 7412-7417.	4.6	10
29	Metal-Free Cascade Formation of Intermolecular C–N Bonds Accessing Substituted Isoindolinones under Cathodic Reduction. Journal of Organic Chemistry, 2021, 86, 15777-15784.	3.2	10
30	Anodic C(sp ³)–H Acyloxylation of Indolin-3-ones Enabled by Oxidant-Free Cross-Dehydrogenative C(sp ³)–O Coupling. Journal of Organic Chemistry, 2022, 87, 1335-1347.	3.2	10
31	Selective Synthesis of Substituted Pyridines and Pyrimidines through Cascade Annulation of Isopropene Derivatives. Organic Letters, 2022, 24, 1620-1625.	4.6	10
32	Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. Journal of Organic Chemistry, 2022, 87, 3555-3566.	3.2	10
33	Transition-metal-free <i>N</i> -difluoromethylation of hydrazones with TMSCF ₂ Br as the difluoromethylation reagent. Organic Chemistry Frontiers, 2019, 6, 2462-2466.	4.5	8
34	Copper-catalyzed [2+3]-annulation of N–H imines with vinyl azides: access to polyaryl 2 <i>H</i> -imidazoles. Chemical Communications, 2020, 56, 5621-5624.	4.1	8
35	Selective synthesis of pyridyl pyridones and oxydipyridines by transition-metal-free hydroxylation and arylation of 2-fluoropyridine derivatives. Organic and Biomolecular Chemistry, 2020, 18, 1185-1193.	2.8	5
36	Palladium-Catalyzed Cross Haloalkynylation of Haloalkynes. Organic Letters, 2022, 24, 3384-3388.	4.6	4