Anna Jelińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3841582/publications.pdf

Version: 2024-02-01

623734 580821 66 815 14 25 citations g-index h-index papers 67 67 67 913 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	APTES-Modified SBA-15 as a Non-Toxic Carrier for Phenylbutazone. Materials, 2022, 15, 946.	2.9	8
2	Improved solubility of lornoxicam by inclusion into SBA-15: Comparison of loading methods. European Journal of Pharmaceutical Sciences, 2022, 171, 106133.	4.0	7
3	Sodium Valproate Incompatibility with Parenteral Nutrition Admixturesâ€"A Risk to Patient Safety: An In Vitro Evaluation Study. Pharmaceutics, 2022, 14, 371.	4.5	4
4	Liposomal Nanoformulation as a Carrier for Curcumin and pEGCGâ€"Study on Stability and Anticancer Potential. Nanomaterials, 2022, 12, 1274.	4.1	15
5	Electron Beam Radiation as a Safe Method for the Sterilization of Aceclofenac and Diclofenacâ€"The Usefulness of EPR and 1H-NMR Methods in Determination of Molecular Structure and Dynamics. Pharmaceutics, 2022, 14, 1331.	4.5	4
6	Toward Safe Pharmacotherapy: The Interplay between Meropenem and Parenteral Nutrition Admixtures. Antibiotics, 2021, 10, 217.	3.7	6
7	Application of the HPLC Method in Parenteral Nutrition Assessment: Stability Studies of Ondansetron. Processes, 2021, 9, 453.	2.8	2
8	Stability and Compatibility Aspects of Drugs: The Case of Selected Cephalosporins. Antibiotics, 2021, 10, 549.	3.7	5
9	All-in-One Pediatric Parenteral Nutrition Admixtures with an Extended Shelf Lifeâ€"Insight in Correlations between Composition and Physicochemical Parameters. Pharmaceutics, 2021, 13, 1017.	4.5	4
10	Modification of the Release of Poorly Soluble Sulindac with the APTES-Modified SBA-15 Mesoporous Silica. Pharmaceutics, 2021, 13, 1693.	4.5	5
11	The Interactions between Ciprofloxacin and Parenteral Nutrition Admixtures. Pharmaceutics, 2020, 12, 27.	4.5	10
12	Stability of high-dose thiamine in parenteral nutrition for treatment of patients with Wernicke's encephalopathy. Clinical Nutrition, 2020, 39, 2929-2932.	5.0	10
13	InÂvitro compatibility studies of vancomycin with ready-to-use parenteral nutrition admixtures for safer clinical practice. Clinical Nutrition, 2020, 39, 2539-2546.	5.0	16
14	Co-Administration of Drugs and Parenteral Nutrition: In Vitro Compatibility Studies of Loop Diuretics for Safer Clinical Practice. Pharmaceutics, 2020, 12, 1092.	4.5	6
15	Safe Practice of Y-Site Drug Administration: The Case of Colistin and Parenteral Nutrition. Pharmaceutics, 2020, 12, 292.	4.5	10
16	Role of Curcumin and (â^')-Epigallocatechin-3-O-Gallate in Bladder Cancer Treatment: A Review. Cancers, 2020, 12, 1801.	3.7	23
17	Stability studies of parenteral nutrition with a high dose of vitamin C. Journal of Oncology Pharmacy Practice, 2020, 26, 1894-1902.	0.9	6
18	Physicochemical Compatibility and Stability of Linezolid with Parenteral Nutrition. Molecules, 2019, 24, 1242.	3.8	10

#	Article	IF	Citations
19	Effect of Lipid Emulsion on Stability of Ampicillin in Total Parenteral Nutrition. Nutrients, 2019, 11, 559.	4.1	15
20	Development, Validation, and Stability Assessment Application of RP-HPLC-DAD Method for Quantification of Ampicillin in Total Parenteral Nutrition Admixtures. Antibiotics, 2019, 8, 268.	3.7	4
21	Clinical Nutrition of Critically Ill Patients in the Context of the Latest ESPEN Guidelines. Medicina (Lithuania), 2019, 55, 770.	2.0	21
22	Hepatitis C – New drugs and treatment prospects. European Journal of Medicinal Chemistry, 2019, 165, 225-249.	5.5	66
23	STABILITY STUDIES OF CEFTIOFUR SODIUM IN AQUEOUS SOLUTIONS AND IN THE SOLID PHASE. Acta Poloniae Pharmaceutica, 2018, 75, 1279-1286.	0.1	0
24	Formulation and characterization of EGCG for the treatment of superficial bladder cancer. International Journal of Molecular Medicine, 2017, 40, 329-336.	4.0	19
25	Critical parameters for the stability of cefquinome sulfate in aqueous solutions and solid phase. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122, 715-728.	1.7	3
26	Stability of Epidoxorubicin Hydrochloride in Aqueous Solutions: Experimental and Theoretical Studies. Journal of Chemistry, 2017, 2017, 1-6.	1.9	1
27	Determining whether curcumin degradation/condensation is actually bioactivation (Review). International Journal of Molecular Medicine, 2016, 37, 1151-1158.	4.0	92
28	Stability of cefozopran hydrochloride in aqueous solutions. Drug Development and Industrial Pharmacy, 2016, 42, 572-577.	2.0	4
29	New Molecular Targets of Anticancer Therapy – Current Status and Perspectives. Current Medicinal Chemistry, 2016, 23, 4176-4220.	2.4	13
30	Radiostability of cefoselis sulfate in the solid state. X-Ray Spectrometry, 2015, 44, 344-350.	1.4	10
31	Application of Vibrational Spectroscopy Supported by Theoretical Calculations in Identification of Amorphous and Crystalline Forms of Cefuroxime Axetil. Scientific World Journal, The, 2015, 2015, 1-8.	2.1	3
32	The Influence of pH and Temperature on the Stability of N-[(Piperidine)methylene]daunorubicin Hydrochloride and a Comparison of the Stability of Daunorubicin and Its Four New Amidine Derivatives in Aqueous Solutions. Scientific World Journal, The, 2014, 2014, 1-6.	2.1	3
33	Stability of Ceftiofur Sodium and Cefquinome Sulphate in Intravenous Solutions. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	13
34	The Influence of Ionizing Radiation, Temperature, and Light on Eplerenone in the Solid State. BioMed Research International, 2014, 2014, 1-8.	1.9	7
35	Assay of Diastereoisomers of Cefuroxime Axetil in Amorphous and Crystalline Forms Using UHPLC-DAD. Chromatographia, 2014, 77, 1489-1495.	1.3	2
36	Analysis of Sartans: A Review. Journal of Pharmaceutical Sciences, 2014, 103, 2-28.	3.3	40

#	Article	IF	Citations
37	Stability of cefoselis sulfate in aqueous solutions. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 285-292.	1.7	10
38	UHPLC: The Greening Face of Liquid Chromatography. Chromatographia, 2013, 76, 1429-1437.	1.3	53
39	Determination of adamantane derivatives in pharmaceutical formulations by using spectrophotometric UV-Vis method. Drug Development and Industrial Pharmacy, 2013, 39, 657-661.	2.0	9
40	Stability-Indicating HPLC Method for the Determination of Cefcapene Pivoxil. Chromatographia, 2013, 76, 387-391.	1.3	6
41	Stability of Cefoselis Sulfate in Intravenous Solutions. Asian Journal of Chemistry, 2013, 25, 7596-7598.	0.3	6
42	Anthracyclines Still Prove Effective in Anticancer Therapy. Mini-Reviews in Medicinal Chemistry, 2013, 13, 627-634.	2.4	19
43	Development and validation of a stability-indicating LC-UV method for the determination of doripenem and biapenem in pharmaceutical dosage forms. Acta Chromatographica, 2012, 24, 207-219.	1.3	3
44	Acid-base catalysis of N-[(morpholine)methylene]daunorubicin. Drug Development and Industrial Pharmacy, 2012, 38, 1024-1028.	2.0	1
45	Development and validation of the stability-indicating LC-UV method for the determination of cefoselis sulphate. Open Chemistry, 2012, 10, 121-126.	1.9	8
46	Kinetic and thermodynamic analysis of degradation of doripenem in the solid state. International Journal of Chemical Kinetics, 2012, 44, 722-728.	1.6	10
47	Stability-indicating derivative spectrophotometry method for the determination of biapenem in the presence of its degradation products. Open Chemistry, 2011, 9, 35-40.	1.9	9
48	Catalytic effect of buffers on the degradation of doripenem in aqueous solutions. Reaction Kinetics, Mechanisms and Catalysis, 2011, 102, 37-47.	1.7	8
49	Stability of epidoxorubicin in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 869-872.	2.8	6
50	Recent Advances in Stability Studies of Carbapenems. Current Pharmaceutical Analysis, 2011, 7, 213-227.	0.6	38
51	Stability of [(N-morpholine)metylene]daunorubicin hydrochloride in solid state. Acta Poloniae Pharmaceutica, 2011, 68, 759-63.	0.1	1
52	Stability of [(N-pyrrolidine)metylene]daunorubicin in aqueous solutions. Reaction Kinetics and Catalysis Letters, 2009, 98, 69-75.	0.6	3
53	A comparison of the stability of doxorubicin and daunorubicin in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2009, 50, 576-579.	2.8	14
54	Stability of the crystalline form of cefaclor monohydrate and its pharmaceutical preparations. Acta Poloniae Pharmaceutica, 2009, 66, 563-9.	0.1	8

#	Article	IF	CITATIONS
55	A comparison of the stability of ertapenem and meropenem in pharmaceutical preparations in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2008, 46, 52-57.	2.8	24
56	Validation of a Stability Indicating LC-UV Method for [(N-Morpholine)methylene]daunorubicin Hydrochloride. Chromatographia, 2008, 67, 107-111.	1.3	4
57	The stability of cefprozil in oral suspension CEFZIL. Acta Poloniae Pharmaceutica, 2008, 65, 261-5.	0.1	7
58	Stability of ertapenem in aqueous solutions. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 445-449.	2.8	24
59	The stability of the amorphous form of cefuroxime axetil in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 1075-1081.	2.8	11
60	Stability of aztreonam in AZACTAM. Il Farmaco, 2005, 60, 599-603.	0.9	3
61	Stability of ceftriaxone disodium in Biotrakson and Tartriakson. Acta Poloniae Pharmaceutica, 2005, 62, 89-94.	0.1	8
62	The stability of Cefuroxime axetil in tablets. Acta Poloniae Pharmaceutica, 2005, 62, 183-7.	0.1	8
63	The influence of pH, temperature and buffers on the degradation kinetics of cefetamet pivoxil hydrochloride in aqueous solutions. Journal of Pharmaceutical and Biomedical Analysis, 2004, 35, 1273-1277.	2.8	12
64	Kinetics of cefamandole nafate degradation in solid phase. Il Farmaco, 2003, 58, 309-313.	0.9	7
65	Evaluation of stability of cefuroxime axetil in solid state. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32, 1181-1187.	2.8	27
66	Kinetics of Hydrolysis of Inosine in Aqueous Solutions. Reaction Kinetics and Catalysis Letters, 2001, 72, 93-100.	0.6	1