
Catarina L Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3840988/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	QuEChERS - Fundamentals, relevant improvements, applications and future trends. Analytica Chimica Acta, 2019, 1070, 1-28.	5.4	299
2	Investigation of urinary volatile organic metabolites as potential cancer biomarkers by solid-phase microextraction in combination with gas chromatography-mass spectrometry. British Journal of Cancer, 2011, 105, 1894-1904.	6.4	188
3	Solid phase microextraction, mass spectrometry and metabolomic approaches for detection of potential urinary cancer biomarkers—A powerful strategy for breast cancer diagnosis. Talanta, 2012, 89, 360-368.	5.5	144
4	Influence of the tannin structure on the disruption effect of carbohydrates on protein–tannin aggregates. Analytica Chimica Acta, 2004, 513, 135-140.	5.4	117
5	Microextraction by Packed Sorbent (MEPS) and Solid-Phase Microextraction (SPME) as Sample Preparation Procedures for the Metabolomic Profiling of Urine. Metabolites, 2014, 4, 71-97.	2.9	70
6	An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines. Microchemical Journal, 2013, 106, 129-138.	4.5	56
7	Volatile metabolomic signature of human breast cancer cell lines. Scientific Reports, 2017, 7, 43969.	3.3	54
8	A fast method using a new hydrophilic–lipophilic balanced sorbent in combination with ultra-high performance liquid chromatography for quantification of significant bioactive metabolites in wines. Talanta, 2011, 86, 82-90.	5.5	52
9	A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials. Food Chemistry, 2014, 160, 266-280.	8.2	50
10	Breast Cancer Metabolomics: From Analytical Platforms to Multivariate Data Analysis. A Review. Metabolites, 2019, 9, 102.	2.9	46
11	Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. Journal of Chromatography A, 2012, 1229, 13-23.	3.7	44
12	A new and improved strategy combining a dispersive-solid phase extraction-based multiclass method with ultra high pressure liquid chromatography for analysis of low molecular weight polyphenols in vegetables. Journal of Chromatography A, 2012, 1260, 154-163.	3.7	43
13	Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Analytical and Bioanalytical Chemistry, 2014, 406, 2101-2122.	3.7	38
14	A sensitive microextraction by packed sorbent-based methodology combined with ultra-high pressure liquid chromatography as a powerful technique for analysis of biologically active flavonols in wines. Analytica Chimica Acta, 2012, 739, 89-98.	5.4	37
15	Madeira Wine Volatile Profile. A Platform to Establish Madeira Wine Aroma Descriptors. Molecules, 2019, 24, 3028.	3.8	36
16	Establishment of authenticity and typicality of sugarcane honey based on volatile profile and multivariate analysis. Food Control, 2017, 73, 1176-1188.	5.5	28
17	An Approach of the Madeira Wine Chemistry. Beverages, 2020, 6, 12.	2.8	28
18	Profiling of volatiles in the leaves of Lamiaceae species based on headspace solid phase microextraction and mass spectrometry. Food Research International, 2013, 51, 378-387.	6.2	27

CATARINA L SILVA

#	Article	IF	CITATIONS
19	An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods. Microchemical Journal, 2018, 139, 110-118.	4.5	26
20	Implementing a central composite design for the optimization of solid phase microextraction to establish the urinary volatomic expression: a first approach for breast cancer. Metabolomics, 2019, 15, 64.	3.0	24
21	A useful approach for the differentiation of wines according to geographical origin based on global volatile patterns. Journal of Separation Science, 2014, 37, 1974-1981.	2.5	23
22	Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. Journal of Chromatography A, 2015, 1381, 54-63.	3.7	22
23	Comparison of high-throughput microextraction techniques, MEPS and μ-SPEed, for the determination of polyphenols in baby food by ultrahigh pressure liquid chromatography. Food Chemistry, 2019, 292, 14-23.	8.2	22
24	Differentiation of Fresh and Processed Fruit Juices Using Volatile Composition. Molecules, 2019, 24, 974.	3.8	21
25	Untargeted Urinary 1H NMR-Based Metabolomic Pattern as a Potential Platform in Breast Cancer Detection. Metabolites, 2019, 9, 269.	2.9	21
26	Exploring the potential of wine industry by-products as source of additives to improve the quality of aquafeed. Microchemical Journal, 2020, 155, 104758.	4.5	21
27	Comprehensive Insight from Phthalates Occurrence: From Health Outcomes to Emerging Analytical Approaches. Toxics, 2021, 9, 157.	3.7	21
28	Volatomic pattern of breast cancer and cancer-free tissues as a powerful strategy to identify potential biomarkers. Analyst, The, 2019, 144, 4153-4161.	3.5	19
29	Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchemical Journal, 2019, 148, 643-651.	4.5	17
30	Geographical differentiation of apple ciders based on volatile fingerprint. Food Research International, 2020, 137, 109550.	6.2	17
31	A useful strategy based on chromatographic data combined with quality-by-design approach for food analysis applications. The case study of furanic derivatives in sugarcane honey. Journal of Chromatography A, 2017, 1520, 117-126.	3.7	16
32	A powerful approach to explore the potential of medicinal plants as a natural source of odor and antioxidant compounds. Journal of Food Science and Technology, 2016, 53, 132-144.	2.8	13
33	Establishment of the Volatile Signature of Wine-Based Aromatic Vinegars Subjected to Maceration. Molecules, 2018, 23, 499.	3.8	13
34	Impact of storage time and temperature on volatomic signature of Tinta Negra wines by LLME/GC- IT MS. Food Research International, 2018, 109, 99-111.	6.2	13
35	Prediction of Terpenoid Toxicity Based on a Quantitative Structure–Activity Relationship Model. Foods, 2019, 8, 628.	4.3	12
36	Polyphenols, biogenic amines and amino acids patterns in Verdelho wines according to vintage. Microchemical Journal, 2020, 153, 104383.	4.5	12

CATARINA L SILVA

#	Article	IF	CITATIONS
37	Fingerprint targeted compounds in authenticity of sugarcane honey - An approach based on chromatographic and statistical data. LWT - Food Science and Technology, 2018, 96, 82-89.	5.2	11
38	Unraveling Vitis vinifera L. grape maturity markers based on integration of terpenic pattern and chemometric methods. Microchemical Journal, 2018, 142, 367-376.	4.5	11
39	Evaluation of the Occurrence of Phthalates in Plastic Materials Used in Food Packaging. Applied Sciences (Switzerland), 2021, 11, 2130.	2.5	11
40	Determination of urinary levels of leukotriene B4 using ad highly specific and sensitive methodology based on automatic MEPS combined with UHPLC-PDA analysis. Talanta, 2015, 144, 382-389.	5.5	9
41	Lipid biosignature of breast cancer tissues by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Breast Cancer Research and Treatment, 2020, 182, 9-19.	2.5	9
42	A Powerful Analytical Strategy Based on QuEChERS-Dispersive Solid-Phase Extraction Combined with Ultrahigh Pressure Liquid Chromatography for Evaluating the Effect of Elicitors on Biosynthesis of trans-Resveratrol in Grapes. Food Analytical Methods, 2016, 9, 670-679.	2.6	8
43	Rapid spectrophotometric methods as a tool to assess the total phenolics and antioxidant potential over grape ripening: a case study of Madeira grapes. Journal of Food Measurement and Characterization, 2018, 12, 1754-1762.	3.2	8
44	Monitoring Phthalates in Table and Fortified Wines by Headspace Solid-Phase Microextraction Combined with Gas Chromatography–Mass Spectrometry Analysis. Journal of Agricultural and Food Chemistry, 2020, 68, 8431-8437.	5.2	8
45	An integrative approach based on GC–qMS and NMR metabolomics data as a comprehensive strategy to search potential breast cancer biomarkers. Metabolomics, 2021, 17, 72.	3.0	6
46	Application of Quality-by-Design Approach in the Analytical Method Development for Quantification of Sugars in Sugarcane Honey by Reversed-Phase Liquid Chromatography. Food Analytical Methods, 2020, 13, 1634-1649.	2.6	5
47	Analytical Platforms for the Determination of Phospholipid Turnover in Breast Cancer Tissue: Role of Phospholipase Activity in Breast Cancer Development. Metabolites, 2021, 11, 32.	2.9	5
48	A high-throughput analytical strategy based on QuEChERS-dSPE/HPLC–DAD–ESI-MSn to establish the phenolic profile of tropical fruits. Journal of Food Composition and Analysis, 2021, 98, 103844.	3.9	4
49	Forensic attribution profiling of food using liquid chromatography–mass spectrometry. , 2021, , 97-121.		1