
William James Bloss

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3840565/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Implications of regional surface ozone increases on visibility degradation in southeast China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 19625.	1.6	10
2	Suppression of anthropogenic secondary organic aerosol formation by isoprene. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	9
3	Field Calibration and Evaluation of an Internet-of-Things-Based Particulate Matter Sensor. Frontiers in Environmental Science, 2022, 9, .	3.3	5
4	Modelling the Impact of National vs. Local Emission Reduction on PM2.5 in the West Midlands, UK Using WRF-CMAQ. Atmosphere, 2022, 13, 377.	2.3	9
5	Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms. Atmospheric Environment: X, 2022, 14, 100164.	1.4	3
6	Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018. Science Advances, 2022, 8, eabm4435.	10.3	31
7	Evaluating the real changes of air quality due to clean air actions using a machine learning technique: Results from 12 Chinese mega-cities during 2013–2020. Chemosphere, 2022, 300, 134608.	8.2	14
8	Insights into air pollution chemistry and sulphate formation from nitrous acid (HONO) measurements during haze events in Beijing. Faraday Discussions, 2021, 226, 223-238.	3.2	9
9	Insights into HONO sources from observations during a solar eclipse. Environmental Science Atmospheres, 2021, 1, 395-405.	2.4	0
10	Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances, 2021, 7, .	10.3	209
11	Evaluating the sensitivity of radical chemistry and ozone formation to ambient VOCs and NO _{<i>x</i>} in Beijing. Atmospheric Chemistry and Physics, 2021, 21, 2125-2147.	4.9	64
12	Long-term trends in air quality in major cities in the UK and India: a view from space. Atmospheric Chemistry and Physics, 2021, 21, 6275-6296.	4.9	31
13	Enhanced wintertime oxidation of VOCs via sustained radical sources in the urban atmosphere. Environmental Pollution, 2021, 274, 116563.	7.5	15
14	Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry. Atmospheric Chemistry and Physics, 2021, 21, 6315-6330.	4.9	4
15	Atmospheric conditions and composition that influence PM _{2.5} oxidative potential in Beijing, China. Atmospheric Chemistry and Physics, 2021, 21, 5549-5573.	4.9	38
16	Using Task Farming to Optimise a Street-Scale Resolution Air Quality Model of the West Midlands (UK). Atmosphere, 2021, 12, 983.	2.3	9
17	Chemical source profiles of fine particles for five different sources in Delhi. Chemosphere, 2021, 274, 129913.	8.2	25
18	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	4.9	28

WILLIAM JAMES BLOSS

#	Article	IF	CITATIONS
19	Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?. Atmospheric Chemistry and Physics, 2021, 21, 18213-18225.	4.9	14
20	Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustainable Cities and Society, 2020, 54, 102003.	10.4	105
21	Quantification of within-vehicle exposure to NOx and particles: Variation with outside air quality, route choice and ventilation options. Atmospheric Environment, 2020, 240, 117810.	4.1	13
22	Effect of aerosol composition on the performance of low-cost optical particle counter correction factors. Atmospheric Measurement Techniques, 2020, 13, 1181-1193.	3.1	56
23	AtChem (version 1), an open-source box model for the Master Chemical Mechanism. Geoscientific Model Development, 2020, 13, 169-183.	3.6	42
24	An instrument for in situ measurement of total ozone reactivity. Atmospheric Measurement Techniques, 2020, 13, 1655-1670.	3.1	4
25	Elevated levels of OH observed in haze events during wintertime in central Beijing. Atmospheric Chemistry and Physics, 2020, 20, 14847-14871.	4.9	62
26	Nitrous acid (HONO) emissions under real-world driving conditions from vehicles in a UK road tunnel. Atmospheric Chemistry and Physics, 2020, 20, 5231-5248.	4.9	31
27	Interference from alkenes in chemiluminescent NO _{<i>x</i>} measurements. Atmospheric Measurement Techniques, 2020, 13, 5977-5991.	3.1	10
28	Using routing apps to model realâ€ŧime road traffic emissions. Weather, 2020, 75, 341-346.	0.7	0
29	Introduction to the special issue "In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)― Atmospheric Chemistry and Physics, 2019, 19, 7519-7546.	4.9	95
30	Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). Atmospheric Measurement Techniques, 2019, 12, 6449-6463.	3.1	44
31	Validity and limitations of simple reaction kinetics to calculate concentrations of organic compounds from ion counts in PTR-MS. Atmospheric Measurement Techniques, 2019, 12, 6193-6208.	3.1	53
32	Investigation of vehicle cold start primary NO2 emissions inferred from ambient monitoring data in the UK and their implications for urban air quality. Atmospheric Environment, 2019, 199, 402-414.	4.1	26
33	Surface–atmosphere exchange of inorganic water-soluble gases and associated ions in bulk aerosol above agricultural grassland pre- and postfertilisation. Atmospheric Chemistry and Physics, 2018, 18, 16953-16978.	4.9	11
34	Global impact of nitrate photolysis in sea-salt aerosol on NO _{<i>x</i>} , OH, and O ₃ in the marine boundary layer. Atmospheric Chemistry and Physics, 2018, 18, 11185-11203.	4.9	62
35	The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO ₂ oxidation: experiment, theory and modelling. Atmospheric Chemistry and Physics, 2018, 18, 6095-6120.	4.9	36
36	A nocturnal atmospheric loss of CH2I2 in the remote marine boundary layer. Journal of Atmospheric Chemistry, 2017, 74, 145-156.	3.2	4

#	Article	IF	CITATIONS
37	Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environmental Pollution, 2017, 220, 766-778.	7.5	125
38	Effects of halogens on European air-quality. Faraday Discussions, 2017, 200, 75-100.	3.2	43
39	Large eddy simulation of reactive pollutants in a deep urban street canyon: Coupling dynamics with O3-NO -VOC chemistry. Environmental Pollution, 2017, 224, 171-184.	7.5	37
40	Evaluation of EDAR vehicle emissions remote sensing technology. Science of the Total Environment, 2017, 609, 1464-1474.	8.0	42
41	60 years of UK visibility measurements: impact of meteorology and atmospheric pollutants on visibility. Atmospheric Chemistry and Physics, 2017, 17, 2085-2101.	4.9	86
42	Evidence for renoxification in the tropical marine boundary layer. Atmospheric Chemistry and Physics, 2017, 17, 4081-4092.	4.9	47
43	HONO measurement by differential photolysis. Atmospheric Measurement Techniques, 2016, 9, 2483-2495.	3.1	15
44	Timescales of mixing and of chemistry: general discussion. Faraday Discussions, 2016, 189, 253-276.	3.2	0
45	Chemical complexity of the urban atmosphere and its consequences: general discussion. Faraday Discussions, 2016, 189, 137-167.	3.2	1
46	Coupling dynamics and chemistry in the air pollution modelling of street canyons: A review. Environmental Pollution, 2016, 214, 690-704.	7.5	96
47	Modelling photochemical pollutants in a deep urban street canyon: Application of a coupled two-box model approximation. Atmospheric Environment, 2016, 143, 86-107.	4.1	11
48	Urban case studies: general discussion. Faraday Discussions, 2016, 189, 473-514.	3.2	1
49	Size-dependent chemical ageing of oleic acid aerosol under dry and humidified conditions. Atmospheric Chemistry and Physics, 2016, 16, 15561-15579.	4.9	15
50	On the interpretation of in situ HONO observations via photochemical steady state. Faraday Discussions, 2016, 189, 191-212.	3.2	20
51	Remember, remember the 5th of November; gunpowder, particles and smog. Weather, 2015, 70, 320-324.	0.7	14
52	Sources and contributions of wood smoke during winter in London: assessing local and regional influences. Atmospheric Chemistry and Physics, 2015, 15, 3149-3171.	4.9	76
53	Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets. Atmospheric Chemistry and Physics, 2015, 15, 8077-8100.	4.9	10
54	Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO ₂ , H ₂ O and dimethyl sulfide. Atmospheric Chemistry and Physics, 2015, 15, 9521-9536.	4.9	62

WILLIAM JAMES BLOSS

#	Article	IF	CITATIONS
55	Modelling the dispersion and transport of reactive pollutants in a deep urban street canyon: Using large-eddy simulation. Environmental Pollution, 2015, 200, 42-52.	7.5	68
56	New directions: Air pollution challenges for developing megacities like Delhi. Atmospheric Environment, 2015, 122, 657-661.	4.1	117
57	Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation. Environmental Science & Technology, 2015, 49, 13168-13178.	10.0	42
58	Theoretical study of the reactions of Criegee intermediates with ozone, alkylhydroperoxides, and carbon monoxide. Physical Chemistry Chemical Physics, 2015, 17, 23847-23858.	2.8	81
59	Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Physical Chemistry Chemical Physics, 2015, 17, 4076-4088.	2.8	117
60	Meteorology, Air Quality, and Health in London: The ClearfLo Project. Bulletin of the American Meteorological Society, 2015, 96, 779-804.	3.3	105
61	Modelling segregation effects of heterogeneous emissions on ozone levels in idealised urban street canyons: Using photochemical box models. Environmental Pollution, 2014, 188, 132-143.	7.5	18
62	Secondary organic aerosol formation and composition from the photo-oxidation of methyl chavicol (estragole). Atmospheric Chemistry and Physics, 2014, 14, 5349-5368.	4.9	13
63	Urban street canyons: Coupling dynamics, chemistry and within-canyon chemical processing of emissions. Atmospheric Environment, 2013, 68, 127-142.	4.1	50
64	NO3 radical production from the reaction between the Criegee intermediate CH2OO and NO2. Physical Chemistry Chemical Physics, 2013, 15, 17070.	2.8	116
65	Radical Product Yields from the Ozonolysis of Short Chain Alkenes under Atmospheric Boundary Layer Conditions. Journal of Physical Chemistry A, 2013, 117, 12468-12483.	2.5	39
66	Presenting SAPUSS: Solving Aerosol Problem by Using Synergistic Strategies in Barcelona, Spain. Atmospheric Chemistry and Physics, 2013, 13, 8991-9019.	4.9	27
67	Summertime NO _x measurements during the CHABLIS campaign: can source and sink estimates unravel observed diurnal cycles?. Atmospheric Chemistry and Physics, 2012, 12, 989-1002.	4.9	36
68	Atmospheric chemistry and physics in the atmosphere of a developed megacity (London): an overview of the REPARTEE experiment and its conclusions. Atmospheric Chemistry and Physics, 2012, 12, 3065-3114.	4.9	124
69	Uncertainties in gas-phase atmospheric iodine chemistry. Atmospheric Environment, 2012, 57, 219-232.	4.1	41
70	Total radical yields from tropospheric ethene ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 11002.	2.8	90
71	lodine monoxide at a clean marine coastal site: observations of high frequency variations and inhomogeneous distributions. Atmospheric Chemistry and Physics, 2011, 11, 6721-6733.	4.9	26
72	Modelling atmospheric composition in urban street canyons. Weather, 2011, 66, 106-110.	0.7	7

#	Article	IF	CITATIONS
73	Coupling of HO _x , NO _x and halogen chemistry in the antarctic boundary layer. Atmospheric Chemistry and Physics, 2010, 10, 10187-10209.	4.9	56
74	Distribution of gaseous and particulate organic composition during dark α-pinene ozonolysis. Atmospheric Chemistry and Physics, 2010, 10, 2893-2917.	4.9	122
75	lodine-mediated coastal particle formation: an overview of the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) Roscoff coastal study. Atmospheric Chemistry and Physics, 2010, 10, 2975-2999.	4.9	125
76	Measurements of iodine monoxide at a semi polluted coastal location. Atmospheric Chemistry and Physics, 2010, 10, 3645-3663.	4.9	19
77	Night-time chemistry above London: measurements of NO ₃ and N ₂ O ₅ from the BT Tower. Atmospheric Chemistry and Physics, 2010, 10, 9781-9795.	4.9	65
78	Alkyl nitrate photochemistry during the tropospheric organic chemistry experiment. Atmospheric Environment, 2010, 44, 773-785.	4.1	26
79	A Multidimensional Study of the Reaction CH ₂ I+O ₂ : Products and Atmospheric Implications. ChemPhysChem, 2010, 11, 3928-3941.	2.1	43
80	Communicating the value of atmospheric services. Meteorological Applications, 2010, 17, 243-250.	2.1	31
81	Rate of Gas Phase Association of Hydroxyl Radical and Nitrogen Dioxide. Science, 2010, 330, 646-649.	12.6	123
82	Novel measurements of atmospheric iodine species by resonance fluorescence. Journal of Atmospheric Chemistry, 2008, 60, 51-70.	3.2	47
83	Chemistry of the Antarctic Boundary Layer and the Interface with Snow: an overview of the CHABLIS campaign. Atmospheric Chemistry and Physics, 2008, 8, 3789-3803.	4.9	73
84	Measurement and interpretation of gas phase formaldehyde concentrations obtained during the CHABLIS campaign in coastal Antarctica. Atmospheric Chemistry and Physics, 2008, 8, 4085-4093.	4.9	23
85	On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O ₃ , HO _x , NO _x and the Hg lifetime. Atmospheric Chemistry and Physics, 2008. 8. 887-900.	4.9	153
86	DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production. Atmospheric Chemistry and Physics, 2008, 8, 2985-2997.	4.9	87
87	Photolysis frequency measurement techniques: results of a comparison within the ACCENT project. Atmospheric Chemistry and Physics, 2008, 8, 5373-5391.	4.9	99
88	Free radical modelling studies during the UK TORCH Campaign in Summer 2003. Atmospheric Chemistry and Physics, 2007, 7, 167-181.	4.9	151
89	Observations of OH and HO ₂ radicals in coastal Antarctica. Atmospheric Chemistry and Physics, 2007, 7, 4171-4185.	4.9	69
90	Night-time radical chemistry during the NAMBLEX campaign. Atmospheric Chemistry and Physics, 2007, 7, 587-598.	4.9	28

#	Article	IF	CITATIONS
91	Design of and initial results from a Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC). Atmospheric Chemistry and Physics, 2007, 7, 5371-5390.	4.9	46
92	Detection of iodine monoxide radicals in the marine boundary layer using laser induced fluorescence spectroscopy. Journal of Atmospheric Chemistry, 2007, 58, 19-39.	3.2	61
93	Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002. Atmospheric Chemistry and Physics, 2006, 6, 2193-2214.	4.9	70
94	OH and HO ₂ chemistry during NAMBLEX: roles of oxygenates, halogen oxides and heterogeneous uptake. Atmospheric Chemistry and Physics, 2006, 6, 1135-1153.	4.9	82
95	Concentrations of OH and HO ₂ radicals during NAMBLEX: measurements and steady state analysis. Atmospheric Chemistry and Physics, 2006, 6, 1435-1453.	4.9	91
96	The North Atlantic Marine Boundary Layer Experiment(NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002. Atmospheric Chemistry and Physics, 2006, 6, 2241-2272.	4.9	65
97	Ozone photochemistry and elevated isoprene during the UK heatwave of august 2003. Atmospheric Environment, 2006, 40, 7598-7613.	4.1	122
98	Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons. Atmospheric Chemistry and Physics, 2005, 5, 641-664.	4.9	442
99	The oxidative capacity of the troposphere: Coupling of field measurements of OH and a global chemistry transport model. Faraday Discussions, 2005, 130, 425.	3.2	108
100	Impact of halogen monoxide chemistry upon boundary layer OH and HO2concentrations at a coastal site. Geophysical Research Letters, 2005, 32, .	4.0	113
101	Validation of the calibration of a laser-induced fluorescence instrument for the measurement of OH radicals in the atmosphere. Atmospheric Chemistry and Physics, 2004, 4, 571-583.	4.9	35
102	Application of a compact all solid-state laser system to the in situ detection of atmospheric OH, HO2, NO and IO by laser-induced fluorescence. Journal of Environmental Monitoring, 2003, 5, 21-28.	2.1	38
103	Rate coefficient for the BrO + HO2 reaction at 298 K. Physical Chemistry Chemical Physics, 2002, 4, 3639-3647.	2.8	27
104	Kinetics and Products of the IO + BrO Reaction. Journal of Physical Chemistry A, 2001, 105, 7855-7864.	2.5	26
105	Kinetics and Products of the IO Self-Reaction. Journal of Physical Chemistry A, 2001, 105, 7840-7854.	2.5	105
106	Kinetics of the ClO Self-Reaction and 210 nm Absorption Cross Section of the ClO Dimer. Journal of Physical Chemistry A, 2001, 105, 11226-11239.	2.5	57
107	OIO and the atmospheric cycle of iodine. Geophysical Research Letters, 1999, 26, 1857-1860.	4.0	72