Sally J Holbrook

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3839545/publications.pdf

Version: 2024-02-01

97 4,886 39
papers citations h-index

97 97 97 4433 all docs docs citations times ranked citing authors

65

g-index

#	Article	IF	CITATIONS
1	How do fisher responses to macroalgal overgrowth influence the resilience of coral reefs?. Limnology and Oceanography, 2022, 67, .	1.6	4
2	Evaluating the precariousness of coral recovery when coral and macroalgae are alternative basins of attraction. Limnology and Oceanography, 2022, 67, .	1.6	10
3	Nonlinear dynamics, resilience, and regime shifts in aquatic communities and ecosystems: an overview. Limnology and Oceanography, 2022, 67, .	1.6	1
4	Spatial covariation in nutrient enrichment and fishing of herbivores in an oceanic coral reef ecosystem. Ecological Applications, 2022, 32, e2515.	1.8	9
5	Longâ€term ecological research and the <scp>COVID</scp> â€19 anthropause: A window to understanding social–ecological disturbance. Ecosphere, 2022, 13, e4019.	1.0	4
6	Landscapeâ€scale patterns of nutrient enrichment in a coral reef ecosystem: implications for coral to algae phase shifts. Ecological Applications, 2021, 31, e2227.	1.8	49
7	Resilience: insights from the U.S. LongTerm Ecological Research Network. Ecosphere, 2021, 12, e03434.	1.0	11
8	Perceptions and responses of Pacific Island fishers to changing coral reefs. Ambio, 2020, 49, 130-143.	2.8	25
9	Nitrogen Identity Drives Differential Impacts of Nutrients on Coral Bleaching and Mortality. Ecosystems, 2020, 23, 798-811.	1.6	72
10	Coral Reef Monitoring by Scuba Divers Using Underwater Photogrammetry and Geodetic Surveying. Remote Sensing, 2020, 12, 3036.	1.8	23
11	Coral Microbiomes Demonstrate Flexibility and Resilience Through a Reduction in Community Diversity Following a Thermal Stress Event. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	34
12	Nitrogen pollution interacts with heat stress to increase coral bleaching across the seascape. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5351-5357.	3.3	112
13	Niche Complementarity and Resistance to Grazing Promote the Invasion Success of Sargassum horneri in North America. Diversity, 2020, 12, 54.	0.7	10
14	Foundation species promote community stability by increasing diversity in a giant kelp forest. Ecology, 2020, 101, e02987.	1.5	52
15	Dietary partitioning promotes the coexistence of planktivorous species on coral reefs. Molecular Ecology, 2019, 28, 2694-2710.	2.0	30
16	Experimental support for alternative attractors on coral reefs. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4372-4381.	3.3	64
17	Potential feedback between coral presence and farmerfish collective behavior promotes coral recovery. Oikos, 2019, 128, 482-492.	1.2	7
18	Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters, 2019, 22, 605-615.	3.0	5

#	Article	IF	CITATIONS
19	High resolution topobathymetry using a Pleiades-1 triplet: Moorea Island in 3D. Remote Sensing of Environment, 2018, 208, 109-119.	4.6	25
20	Maneuvering towards adaptive co-management in a coral reef fishery. Marine Policy, 2018, 98, 77-84.	1.5	17
21	Critical Information Gaps Impeding Understanding of the Role of Larval Connectivity Among Coral Reef Islands in an Era of Global Change. Frontiers in Marine Science, 2018, 5, .	1.2	18
22	Macroalgae size refuge from herbivory promotes alternative stable states on coral reefs. PLoS ONE, 2018, 13, e0202273.	1.1	27
23	Collective aggressiveness of an ecosystem engineer is associated with coral recovery. Behavioral Ecology, 2018, , .	1.0	2
24	Predicting coral community recovery using multiâ€species population dynamics models. Ecology Letters, 2018, 21, 1790-1799.	3.0	59
25	Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. International Journal of Remote Sensing, 2018, 39, 5676-5688.	1.3	53
26	Recruitment Drives Spatial Variation in Recovery Rates of Resilient Coral Reefs. Scientific Reports, 2018, 8, 7338.	1.6	106
27	Complexities and Uncertainties in Transitioning Small-Scale Coral Reef Fisheries. Frontiers in Marine Science, 2016, 3, .	1.2	27
28	Simulating social-ecological systems: the Island Digital Ecosystem Avatars (IDEA) consortium. GigaScience, 2016, 5, 14.	3.3	15
29	Spatial patterns of selfâ€recruitment of a coral reef fish in relation to islandâ€scale retention mechanisms. Molecular Ecology, 2016, 25, 5203-5211.	2.0	16
30	Coral Reef Resilience, Tipping Points and the Strength of Herbivory. Scientific Reports, 2016, 6, 35817.	1.6	75
31	Blade life span, structural investment, and nutrient allocation in giant kelp. Oecologia, 2016, 182, 397-404.	0.9	17
32	Stochastic density effects on adult fish survival and implications for population fluctuations. Ecology Letters, 2016, 19, 153-162.	3.0	14
33	Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs, 2016, 35, 999-1009.	0.9	42
34	Reef Fishes in Biodiversity Hotspots Are at Greatest Risk from Loss of Coral Species. PLoS ONE, 2015, 10, e0124054.	1.1	40
35	Hydrodynamics influence coral performance through simultaneous direct and indirect effects. Ecology, 2015, 96, 1540-1549.	1.5	30
36	Range expansion of a non-native, invasive macroalga Sargassum horneri (Turner) C. Agardh, 1820 in the eastern Pacific. Biolnvasions Records, 2015, 4, 243-248.	0.4	50

#	Article	IF	Citations
37	How will coral reef fish communities respond to climate-driven disturbances? Insight from landscape-scale perturbations. Oecologia, 2014, 176, 285-296.	0.9	47
38	Predation and landscape characteristics independently affect reef fish community organization. Ecology, 2014, 95, 1294-1307.	1.5	33
39	The importance of progressive senescence in the biomass dynamics of giant kelp (<i>Macrocystis) Tj ETQq1 1 0.3</i>	784314 rg	;BT ₃ gOverlock
40	Patterns and controls of the dynamics of net primary production by understory macroalgal assemblages in giant kelp forests. Journal of Phycology, 2013, 49, 248-257.	1.0	27
41	Stable Isotopes Reveal Trophic Relationships and Diet of Consumers in Temperate Kelp Forest and Coral Reef Ecosystems. Oceanography, 2013, 26, 180-189.	0.5	25
42	Biological and Physical Interactions on a Tropical Island Coral Reef: Transport and Retention Processes on Moorea, French Polynesia. Oceanography, 2013, 26, 52-63.	0.5	61
43	Fluctuations in food supply drive recruitment variation in a marine fish. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 4542-4550.	1.2	22
44	Influence of corallivory, competition, and habitat structure on coral community shifts. Ecology, 2011, 92, 1959-1971.	1.5	42
45	Analysis of abrupt transitions in ecological systems. Ecosphere, 2011, 2, art129.	1.0	239
46	Habitat biodiversity as a determinant of fish community structure on coral reefs. Ecology, 2011, 92, 2285-2298.	1.5	124
47	Herbivory, Connectivity, and Ecosystem Resilience: Response of a Coral Reef to a Large-Scale Perturbation. PLoS ONE, 2011, 6, e23717.	1.1	223
48	Climate-driven increases in storm frequency simplify kelp forest food webs. Global Change Biology, 2011, 17, 2513-2524.	4.2	172
49	Fish communities on staghorn coral: effects of habitat characteristics and resident farmerfishes. Environmental Biology of Fishes, 2011, 91, 429-448.	0.4	33
50	Indirect effects of species interactions on habitat provisioning. Oecologia, 2011, 166, 739-749.	0.9	29
51	Triggers and maintenance of multiple shifts in the state of a natural community. Oecologia, 2010, 164, 489-498.	0.9	19
52	Sublethal toxicant effects with dynamic energy budget theory: application to mussel outplants. Ecotoxicology, 2010, 19, 38-47.	1.1	20
53	The role of microhabitat preference and social organization in determining the spatial distribution of a coral reef fish. Environmental Biology of Fishes, 2009, 84, 1-10.	0.4	32
54	Isolation and characterization of eight polymorphic microsatellite markers from the orange-fin anemonefish, Amphiprion chrysopterus. Conservation Genetics Resources, 2009, 1, 333-335.	0.4	14

#	Article	IF	CITATIONS
55	Intraguild predation in a structured habitat: distinguishing multipleâ€predator effects from competitor effects. Ecology, 2009, 90, 2434-2443.	1.5	27
56	Isolation and characterization of 13 polymorphic nuclear microsatellite primers for the widespread Indoâ€Pacific threeâ€spot damselfish, ⟨i⟩Dascyllus trimaculatus⟨/i⟩, and closely related ⟨i⟩D. auripinnis⟨/i⟩. Molecular Ecology Resources, 2009, 9, 213-215.	2.2	6
57	Effects of sheltering fish on growth of their host corals. Marine Biology, 2008, 155, 521-530.	0.7	94
58	THE SCALE AND CAUSE OF SPATIAL HETEROGENEITY IN STRENGTH OF TEMPORAL DENSITY DEPENDENCE. Ecology, 2007, 88, 1241-1249.	1.5	43
59	Symbiotic crabs maintain coral health by clearing sediments. Coral Reefs, 2006, 25, 609-615.	0.9	99
60	POPULATION DYNAMICS OF A DAMSELFISH: EFFECTS OF A COMPETITOR THAT ALSO IS AN INDIRECT MUTUALIST. Ecology, 2004, 85, 979-985.	1.5	32
61	An Experimental Evaluation of Different Methods of Restoring Phyllospadix torreyi (Surfgrass). Restoration Ecology, 2004, 12, 70-79.	1.4	38
62	Spatial and temporal variation in mortality of newly settled damselfish: patterns, causes and co-variation with settlement. Oecologia, 2003, 135, 532-541.	0.9	44
63	Mutualism can mediate competition and promote coexistence. Ecology Letters, 2003, 6, 898-902.	3.0	79
64	Variation in structural attributes of patch-forming corals and in patterns of abundance of associated fishes. Marine and Freshwater Research, 2002, 53, 1045.	0.7	68
65	Predictability of fish assemblages on coral patch reefs. Marine and Freshwater Research, 2002, 53, 181.	0.7	46
66	COMPETITION FOR SHELTER SPACE CAUSES DENSITY-DEPENDENT PREDATION MORTALITY IN DAMSELFISHES. Ecology, 2002, 83, 2855-2868.	1.5	309
67	Correlates of spatial variation in settlement of two tropical damselfishes. Marine and Freshwater Research, 2002, 53, 329.	0.7	10
68	Declines in regional fish populations: have species responded similarly to environmental change?. Marine and Freshwater Research, 2002, 53, 189.	0.7	14
69	Rethinking ecological inference: density dependence in reef fishes. Ecology Letters, 2002, 5, 715-721.	3.0	85
70	COMPETITION FOR SHELTER SPACE CAUSES DENSITY-DEPENDENT PREDATION MORTALITY IN DAMSELFISHES. , 2002, 83, 2855.		1
71	Gene flow at three spatial scales in a coral reef fish, the three-spot dascyllus, Dascyllus trimaculatus. Marine Biology, 2001, 138, 457-465.	0.7	82
72	HABITAT-LIMITED RECRUITMENT OF CORAL REEF DAMSELFISH. Ecology, 2000, 81, 3479-3494.	1.5	74

#	Article	IF	CITATIONS
73	Habitat-Limited Recruitment of Coral Reef Damselfish. Ecology, 2000, 81, 3479.	1.5	2
74	MORTALITY OF JUVENILE DAMSELFISH: IMPLICATIONS FOR ASSESSING PROCESSES THAT DETERMINE ABUNDANCE. Ecology, 1999, 80, 35-50.	1.5	100
75	Settlement and recruitment of three damselfish species: larval delivery and competition for shelter space. Oecologia, 1999, 118, 76-86.	0.9	78
76	Studies on germination and root development in the surfgrass Phyllospadix torreyi: implications for habitat restoration. Aquatic Botany, 1998, 62, 71-80.	0.8	23
77	CHANGES IN AN ASSEMBLAGE OF TEMPERATE REEF FISHES ASSOCIATED WITH A CLIMATE SHIFT. , 1997, 7, 1299-1310.		154
78	Compensation in resource use by foragers released from interspecific competition. Journal of Experimental Marine Biology and Ecology, 1995, 185, 219-233.	0.7	16
79	Spatial and Temporal Patterns in Assemblages of Temperate Reef Fish. American Zoologist, 1994, 34, 463-475.	0.7	67
80	Causes and Consequences of Dietary Specialization in Surfperches: Patch Choice and Intraspecific Competition. Ecology, 1992, 73, 402-412.	1.5	93
81	Contrasting effects of giant kelp on dynamics of surfperch populations. Oecologia, 1990, 84, 419-429.	0.9	28
82	Population Responses of Surfperch Released from Competition. Ecology, 1990, 71, 1653-1665.	1.5	46
83	Temporally Concordant Structure of a Fish Assemblage: Bound or Determined?. American Naturalist, 1990, 135, 63-73.	1.0	26
84	Resource Overlap, Prey Dynamics, and The Strength of Competition. Ecology, 1989, 70, 1943-1953.	1.5	67
85	Effects of predation risk on foraging behavior: mechanisms altering patch choice. Journal of Experimental Marine Biology and Ecology, 1988, 121, 151-163.	0.7	38
86	The Combined Effects of Predation Risk and Food Reward on Patch Selection. Ecology, 1988, 69, 125-134.	1.5	173
87	Food acquisition by competing surfperch on a patchy environmental gradient. Environmental Biology of Fishes, 1986, 16, 135-146.	0.4	29
88	Seasonally fluctuating resources and temporal variability of interspecific competition. Oecologia, 1986, 69, 1-11.	0.9	61
89	Patch selection by juvenile black surfperch (Embiotocidae) under variable risk: Interactive influence of food quality and structural complexity. Journal of Experimental Marine Biology and Ecology, 1985, 85, 269-285.	0.7	79
90	Gape-limitation, foraging tactics and prey size selectivity of two microcarnivorous species of fish. Oecologia, 1984, 63, 6-12.	0.9	102

SALLY J HOLBROOK

#	Article	IF	CITATION
91	Experimental analyses of patch selection by foraging black surfperch (Embiotoca jacksoni Agazzi). Journal of Experimental Marine Biology and Ecology, 1984, 79, 39-64.	0.7	46
92	Aggregation and Abandonment at Grasshopper Pueblo, Arizona. Journal of Field Archaeology, 1982, 9, 193-206.	0.7	26
93	Habitat Utilization, Competitive Interactions, and Coexistence of three Species of Cricetine Rodents in East-Central Arizona. Ecology, 1979, 60, 758-769.	1.5	54
94	Species diversity patterns in some present and prehistoric rodent communities. Oecologia, 1979, 44, 355-367.	0.9	16
95	Environmental Reconstruction and the Abandonment of the Largo-Gallina Area, New Mexico. Journal of Field Archaeology, 1978, 5, 29-49.	0.7	6
96	Rodent Faunal Turnover and Prehistoric Community Stability in Northwestern New Mexico. American Naturalist, 1977, 111, 1195-1208.	1.0	30
97	Prehistoric Environmental Change in Northern New Mexico: Evidence from a Gallina Phase Archaeological Site. Kiva, The, 1976, 41, 309-317.	0.2	25