John R Kelsoe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3838551/publications.pdf

Version: 2024-02-01

215 papers 20,576 citations

61 h-index 131 g-index

230 all docs

230 docs citations

times ranked

230

20294 citing authors

#	Article	IF	CITATIONS
1	Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biological Psychiatry, 2022, 91, 102-117.	1.3	61
2	Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors. Biological Psychiatry, 2022, 91, 313-327.	1.3	114
3	Correction of depressionâ€associated circadian rhythm abnormalities is associated with lithium response in bipolar disorder. Bipolar Disorders, 2022, 24, 521-529.	1.9	8
4	Investigating the phenotypic and genetic associations between personality traits and suicidal behavior across major mental health diagnoses. European Archives of Psychiatry and Clinical Neuroscience, $2022, 1.$	3.2	2
5	Using polygenic scores and clinical data for bipolar disorder patient stratification and lithium response prediction: machine learning approach. British Journal of Psychiatry, 2022, 220, 219-228.	2.8	11
6	Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Molecular Psychiatry, 2022, 27, 3842-3856.	7.9	5
7	Association of polygenic score for major depression with response to lithium in patients with bipolar disorder. Molecular Psychiatry, 2021, 26, 2457-2470.	7.9	44
8	Prediction of lithium response using genomic data. Scientific Reports, 2021, 11, 1155.	3.3	11
9	A 7 Tesla Amygdalar-Hippocampal Shape Analysis of Lithium Response in Bipolar Disorder. Frontiers in Psychiatry, 2021, 12, 614010.	2.6	7
10	Circadian rhythms in bipolar disorder patient-derived neurons predict lithium response: preliminary studies. Molecular Psychiatry, 2021, 26, 3383-3394.	7.9	29
11	Altered Neuronal Support and Inflammatory Response in Bipolar Disorder Patient-Derived Astrocytes. Stem Cell Reports, 2021, 16, 825-835.	4.8	20
12	Clinical predictors of nonâ€response to lithium treatment in the Pharmacogenomics of Bipolar Disorder (PGBD) study. Bipolar Disorders, 2021, 23, 821-831.	1.9	20
13	A prospective study to determine the clinical utility of pharmacogenetic testing of veterans with treatment-resistant depression. Journal of Psychopharmacology, 2021, 35, 992-1002.	4.0	14
14	Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nature Genetics, 2021, 53, 817-829.	21.4	629
15	Lithium-Responsiveness in Bipolar Depression Patients Attenuates Circadian Rhythm Disturbances. Biological Psychiatry, 2021, 89, S334.	1.3	O
16	Characterisation of age and polarity at onset in bipolar disorder. British Journal of Psychiatry, 2021, 219, 659-669.	2.8	20
17	HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders. Scientific Reports, 2021, 11, 17823.	3.3	10
18	Deficient LEF1 expression is associated with lithium resistance and hyperexcitability in neurons derived from bipolar disorder patients. Molecular Psychiatry, 2021, 26, 2440-2456.	7.9	41

#	Article	IF	CITATIONS
19	Association of Attention-Deficit/Hyperactivity Disorder and Depression Polygenic Scores with Lithium Response: A Consortium for Lithium Genetics Study. Complex Psychiatry, 2021, 7, 80-89.	0.9	6
20	Combining schizophrenia and depression polygenic risk scores improves the genetic prediction of lithium response in bipolar disorder patients. Translational Psychiatry, 2021, 11, 606.	4.8	25
21	A functional variant in the serotonin receptor 7 gene (HTR7), rs7905446, is associated with good response to SSRIs in bipolar and unipolar depression. Molecular Psychiatry, 2020, 25, 1312-1322.	7.9	20
22	Decreased core symptoms of mania and utilization of lithium/mood stabilizing anticonvulsants in U.S. bipolar I patients of African vs European ancestry. Journal of Affective Disorders, 2020, 260, 361-365.	4.1	7
23	Peripheral cytokine levels and response to antidepressant treatment in depression: a systematic review and meta-analysis. Molecular Psychiatry, 2020, 25, 339-350.	7.9	228
24	Lithium Alters Expression of RNAs in a Type-Specific Manner in Differentiated Human Neuroblastoma Neuronal Cultures, Including Specific Genes Involved in Alzheimer's Disease. Biological Psychiatry, 2020, 87, S302-S303.	1.3	0
25	Interaction between adverse childhood experiences and polygenic risk in patients with bipolar disorder. Translational Psychiatry, 2020, 10, 326.	4.8	10
26	Attitudes on pharmacogenetic testing in psychiatric patients with treatmentâ€resistant depression. Depression and Anxiety, 2020, 37, 842-850.	4.1	7
27	Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice. Translational Psychiatry, 2020, 10, 407.	4.8	14
28	Polygenic risk for anxiety influences anxiety comorbidity and suicidal behavior in bipolar disorder. Translational Psychiatry, 2020, 10, 298.	4.8	16
29	The association between lithium use and neurocognitive performance in patients with bipolar disorder. Neuropsychopharmacology, 2020, 45, 1743-1749.	5.4	28
30	Effect of the Type and Number of Adverse Childhood Experiences and the Timing of Adverse Experiences on Clinical Outcomes in Individuals with Bipolar Disorder. Brain Sciences, 2020, 10, 254.	2.3	12
31	Synaptotagmin-7 is a key factor for bipolar-like behavioral abnormalities in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4392-4399.	7.1	15
32	Investigating polygenic burden in age at disease onset in bipolar disorder: Findings from an international multicentric study. Bipolar Disorders, 2019, 21, 68-75.	1.9	20
33	<i>SCN11A</i> mRNA levels in female bipolar disorder PBMCs as tentative biomarker for distinct patient subâ€phenotypes. Drug Development Research, 2019, 80, 1128-1135.	2.9	5
34	VARIANTS IN THE PROMOTER OF TRKB ARE ASSOCIATED WITH A GOOD RESPONSE TO LITHIUM IN BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S965.	0.7	0
35	GENETIC VARIANTS AS MODIFIERS OF THE ASSOCIATION OF BODY MASS INDEX WITH BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S838-S839.	0.7	0
36	GWAS of Suicide Attempt in Psychiatric Disorders and Association With Major Depression Polygenic Risk Scores. American Journal of Psychiatry, 2019, 176, 651-660.	7.2	186

#	Article	IF	CITATIONS
37	Genome-wide association study identifies 30 loci associated with bipolar disorder. Nature Genetics, 2019, 51, 793-803.	21.4	1,191
38	Entrainment of Circadian Rhythms to Temperature Reveals Amplitude Deficits in Fibroblasts from Patients with Bipolar Disorder and Possible Links to Calcium Channels. Molecular Neuropsychiatry, 2019, 5, 115-124.	2.9	9
39	THE POLYGENIC EPISTASIS RISK SCORE DEMONSTRATES SIGNIFICANT ROLE OF GENE INTERACTION IN BIPOLAR DISORDER. European Neuropsychopharmacology, 2019, 29, S807.	0.7	0
40	Lithium alters expression of RNAs in a type-specific manner in differentiated human neuroblastoma neuronal cultures, including specific genes involved in Alzheimer's disease. Scientific Reports, 2019, 9, 18261.	3.3	12
41	Genomic Relationships, Novel Loci, and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 2019, 179, 1469-1482.e11.	28.9	935
42	Study of 45 candidate genes suggests CACNG2 may be associated with lithium response in bipolar disorder. Journal of Affective Disorders, 2019, 248, 175-179.	4.1	15
43	Efficient region-based test strategy uncovers genetic risk factors for functional outcome in bipolar disorder. European Neuropsychopharmacology, 2019, 29, 156-170.	0.7	7
44	Chronotype and cellular circadian rhythms predict the clinical response to lithium maintenance treatment in patients with bipolar disorder. Neuropsychopharmacology, 2019, 44, 620-628.	5.4	80
45	RNA sequencing of bipolar disorder lymphoblastoid cell lines implicates the neurotrophic factor HRP-3 in lithium's clinical efficacy. World Journal of Biological Psychiatry, 2019, 20, 449-461.	2.6	13
46	Association of Polygenic Score for Schizophrenia and HLA Antigen and Inflammation Genes With Response to Lithium in Bipolar Affective Disorder. JAMA Psychiatry, 2018, 75, 65-74.	11.0	102
47	A common genetic variant in CACNA1C predicts heart rate in patients with bipolar disorder. Psychiatry Research, 2018, 263, 294-295.	3.3	1
48	Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics. International Journal of Bipolar Disorders, 2018, 6, 24.	2.2	8
49	A gene co-expression module implicating the mitochondrial electron transport chain is associated with long-term response to lithium treatment in bipolar affective disorder. Translational Psychiatry, 2018, 8, 183.	4.8	21
50	Pharmacogenetic profile and major depressive and/or bipolar disorder treatment: a retrospective, cross-sectional study. Pharmacogenomics, 2018, 19, 1169-1179.	1.3	8
51	A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data. PLoS Computational Biology, 2018, 14, e1006105.	3.2	3
52	Analysis of the Influence of microRNAs in Lithium Response in Bipolar Disorder. Frontiers in Psychiatry, 2018, 9, 207.	2.6	28
53	Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell, 2018, 173, 1705-1715.e16.	28.9	623
54	Differentiation of Inflammation-Responsive Astrocytes from Glial Progenitors Generated from Human Induced Pluripotent Stem Cells. Stem Cell Reports, 2017, 8, 1757-1769.	4.8	120

#	Article	IF	CITATIONS
55	From Gene Expression To Disease Association. European Neuropsychopharmacology, 2017, 27, S416.	0.7	O
56	The COMT Val158Met Polymorphism and Exploratory Behavior in Bipolar Mania. Molecular Neuropsychiatry, 2017, 3, 151-156.	2.9	6
57	Unraveling the biology of bipolar disorder using induced pluripotent stemâ€derived neurons. Bipolar Disorders, 2017, 19, 544-551.	1.9	8
58	Genetic Overlap Between Attention-Deficit/Hyperactivity Disorder and Bipolar Disorder: Evidence From Genome-wide Association Study Meta-analysis. Biological Psychiatry, 2017, 82, 634-641.	1.3	99
59	Factor analysis of temperament and personality traits in bipolar patients: Correlates with comorbidity and disorder severity. Journal of Affective Disorders, 2017, 207, 282-290.	4.1	28
60	Neurotrophin Genes and Antidepressant-Worsening Suicidal Ideation: A Prospective Case-Control Study. International Journal of Neuropsychopharmacology, 2016, 19, pyw059.	2.1	16
61	The Pharmacogenomics of Bipolar Disorder study (PGBD): identification of genes for lithium response in a prospective sample. BMC Psychiatry, 2016, 16, 129.	2.6	61
62	Translating genome-wide association findings into new therapeutics for psychiatry. Nature Neuroscience, 2016, 19, 1392-1396.	14.8	115
63	Exome sequencing in the knockin mice generated using the CRISPR/Cas system. Scientific Reports, 2016, 6, 34703.	3.3	34
64	Genome-wide association study of 40,000 individuals identifies two novel loci associated with bipolar disorder. Human Molecular Genetics, 2016, 25, 3383-3394.	2.9	182
65	Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet, The, 2016, 387, 1085-1093.	13.7	306
66	Calcium channel genes associated with bipolar disorder modulate lithium's amplification of circadian rhythms. Neuropharmacology, 2016, 101, 439-448.	4.1	47
67	Toward a Valid Animal Model of Bipolar Disorder: How the Research Domain Criteria Help Bridge the Clinical-Basic Science Divide. Biological Psychiatry, 2016, 79, 62-70.	1.3	52
68	A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region. Journal of Affective Disorders, 2016, 189, 141-149.	4.1	45
69	RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics, 2015, 16, 990.	2.8	28
70	Catechol-O-methyltransferase genotype and response to Compensatory Cognitive Training in outpatients with schizophrenia. Psychiatric Genetics, 2015, 25, 131-134.	1.1	5
71	CDH13andHCRTR2May Be Associated with Hypersomnia Symptom of Bipolar Depression: A Genome-Wide Functional Enrichment Pathway Analysis. Psychiatry Investigation, 2015, 12, 402.	1.6	14
72	The pharmacodynamic properties of lurasidone and their role in its antidepressant efficacy in bipolar disorder. European Neuropsychopharmacology, 2015, 25, 335-342.	0.7	23

#	Article	IF	Citations
73	Genome wide association study identifies variants in NBEA associated with migraine in bipolar disorder. Journal of Affective Disorders, 2015, 172, 453-461.	4.1	15
74	A novel missense mutation in collagenous domain of EDA gene in a Chinese family with X-linked hypohidrotic ectodermal dysplasia. Journal of Genetics, 2015, 94, 115-119.	0.7	5
75	A comprehensive meta-analysis of association between genetic variants of GDF5 and osteoarthritis of the knee, hip and hand. Inflammation Research, 2015, 64, 405-414.	4.0	43
76	Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3576-3581.	7.1	152
77	Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature, 2015, 527, 95-99.	27.8	461
78	Over-expression of XIST, the Master Gene for X Chromosome Inactivation, in Females With Major Affective Disorders. EBioMedicine, 2015, 2, 909-918.	6.1	41
79	Association between genetic variants of DVWA and osteoarthritis of the knee and hip: a comprehensive meta-analysis. International Journal of Clinical and Experimental Medicine, 2015, 8, 9430-7.	1.3	5
80	Variable Clinical Presentation of an MUC1 Mutation Causing Medullary Cystic Kidney Disease Type 1. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 527-535.	4.5	65
81	Circadian polymorphisms associated with affective disorders. Journal of Circadian Rhythms, 2014, 7, 2.	1.3	202
82	FMR1, circadian genes and depression: suggestive associations or false discovery?. Journal of Circadian Rhythms, 2014, 11, 3.	1.3	18
83	Identification of Pathways for Bipolar Disorder. JAMA Psychiatry, 2014, 71, 657.	11.0	204
84	Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Molecular Psychiatry, 2014, 19, 1017-1024.	7.9	333
85	Effects of COMT genotype on cognitive ability and functional capacity in individuals with schizophrenia. Schizophrenia Research, 2014, 159, 114-117.	2.0	22
86	Towards the clinical implementation of pharmacogenetics in bipolar disorder. BMC Medicine, 2014, 12, 90.	5.5	23
87	Whole Brain Expression of Bipolar Disorder Associated Genes: Structural and Genetic Analyses. PLoS ONE, 2014, 9, e100204.	2.5	24
88	Common and Rare Variant Analysis in Early-Onset Bipolar Disorder Vulnerability. PLoS ONE, 2014, 9, e104326.	2.5	34
89	Circadian Polymorphisms in Night Owls, in Bipolars, and in Non-24-Hour Sleep Cycles. Psychiatry Investigation, 2014, 11, 345.	1.6	22
90	Heritability and linkage analysis of personality in bipolar disorder. Journal of Affective Disorders, 2013, 151, 748-755.	4.1	22

#	Article	IF	Citations
91	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	21.4	2,067
92	Association of dopamine transporter gene variants with childhood ADHD features in bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 137-145.	1.7	15
93	Heritability and genome-wide SNP linkage analysis of temperament in bipolar disorder. Journal of Affective Disorders, 2013, 150, 1031-1040.	4.1	26
94	A genome-wide association study of seasonal pattern mania identifies NF1A as a possible susceptibility gene for bipolar disorder. Journal of Affective Disorders, 2013, 145, 200-207.	4.1	39
95	Neuroimaging in Psychiatric Pharmacogenetics Research: The Promise and Pitfalls. Neuropsychopharmacology, 2013, 38, 2327-2337.	5.4	17
96	All SNPs Are Not Created Equal: Genome-Wide Association Studies Reveal a Consistent Pattern of Enrichment among Functionally Annotated SNPs. PLoS Genetics, 2013, 9, e1003449.	3.5	268
97	Improved Detection of Common Variants Associated with Schizophrenia and Bipolar Disorder Using Pleiotropy-Informed Conditional False Discovery Rate. PLoS Genetics, 2013, 9, e1003455.	3.5	298
98	Genome-Wide Association Study of Irritable vs. Elated Mania Suggests Genetic Differences between Clinical Subtypes of Bipolar Disorder. PLoS ONE, 2013, 8, e53804.	2.5	22
99	Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen) Report. PLoS ONE, 2013, 8, e65636.	2.5	156
100	Genome-wide significant association between a †negative mood delusions†dimension in bipolar disorder and genetic variation on chromosome 3q26.1. Translational Psychiatry, 2012, 2, e165-e165.	4.8	14
101	Evidence for association of bipolar disorder to haplotypes in the 22q12.3 region near the genes stargazin, ift27 and parvalbumin. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 941-950.	1.7	10
102	Genome-Wide Association Study of Temperament in Bipolar Disorder Reveals Significant Associations with Three Novel Loci. Biological Psychiatry, 2012, 72, 303-310.	1.3	83
103	A Survey of Genomic Studies Supports Association of Circadian Clock Genes with Bipolar Disorder Spectrum Illnesses and Lithium Response. PLoS ONE, 2012, 7, e32091.	2.5	146
104	Mitochondrial Mutations and Polymorphisms in Psychiatric Disorders. Frontiers in Genetics, 2012, 3, 103.	2.3	81
105	Receptor targets for antidepressant therapy in bipolar disorder: An overview. Journal of Affective Disorders, 2012, 138, 222-238.	4.1	39
106	Further evidence for linkage of bipolar disorder to chromosomes 6 and 17 in a new independent pedigree series. Bipolar Disorders, 2012, 14, 71-79.	1.9	4
107	The pharmacogenomics of mood stabilizer response in bipolar disorder. Mental Health Clinician, 2012, 1, 217-221.	1.0	1
108	High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia. Neuron, 2011, 72, 951-963.	8.1	290

#	Article	IF	Citations
109	Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 2011, 471, 499-503.	27.8	296
110	Functional genetic variation in the Rev-Erb <i<math>\hat{l}±pathway and lithium response in the treatment of bipolar disorder. Genes, Brain and Behavior, 2011, 10, 852-861.</i<math>	2.2	81
111	Delayed sleep phase syndrome is related to seasonal affective disorder. Journal of Affective Disorders, 2011, 133, 573-579.	4.1	67
112	Genomeâ€wide association analysis of age at onset and psychotic symptoms in bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 370-378.	1.7	42
113	Analysis of 94 Candidate Genes and 12 Endophenotypes for Schizophrenia From the Consortium on the Genetics of Schizophrenia. American Journal of Psychiatry, 2011, 168, 930-946.	7.2	241
114	Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 2011, 43, 977-983.	21.4	1,283
115	Genome-Wide Association of Bipolar Disorder Suggests an Enrichment of Replicable Associations in Regions near Genes. PLoS Genetics, 2011, 7, e1002134.	3.5	59
116	Suggestive evidence for linkage of ADHD features in bipolar disorder to chromosome 10p14. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2010, 153B, 260-268.	1.7	11
117	Allele specific analysis of the ADRBK2 gene in lymphoblastoid cells from bipolar disorder patients. Journal of Psychiatric Research, 2010, 44, 201-208.	3.1	7
118	A genome-wide linkage study of bipolar disorder and co-morbid migraine: Replication of migraine linkage on chromosome 4q24, and suggestion of an overlapping susceptibility region for both disorders on chromosome 20p11. Journal of Affective Disorders, 2010, 122, 14-26.	4.1	36
119	A genomeâ€wide association study of bipolar disorder and comorbid migraine. Genes, Brain and Behavior, 2010, 9, 673-680.	2.2	40
120	A gene for impulsivity. Nature, 2010, 468, 1049-1050.	27.8	25
121	CRY2 Is Associated with Depression. PLoS ONE, 2010, 5, e9407.	2.5	132
122	Reduced NMDAR1 expression in the Sp4 hypomorphic mouse may contribute to endophenotypes of human psychiatric disorders. Human Molecular Genetics, 2010, 19, 3797-3805.	2.9	36
123	The International Consortium on Lithium Genetics (ConLiGen): An Initiative by the NIMH and IGSLI to Study the Genetic Basis of Response to Lithium Treatment. Neuropsychobiology, 2010, 62, 72-78.	1.9	134
124	Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics, 2010, 11, 1439-1465.	1.3	60
125	Clinical and Pathophysiological Relations Between Migraine and Mood Disorders. Current Psychiatry Reviews, 2009, 5, 93-109.	0.9	8
126	Genomewide Association Studies: History, Rationale, and Prospects for Psychiatric Disorders. American Journal of Psychiatry, 2009, 166, 540-556.	7.2	391

#	Article	IF	Citations
127	Rapid and Sustained Antidepressant Response with Sleep Deprivation and Chronotherapy in Bipolar Disorder. Biological Psychiatry, 2009, 66, 298-301.	1.3	220
128	Transcription Factor SP4 Is a Susceptibility Gene for Bipolar Disorder. PLoS ONE, 2009, 4, e5196.	2.5	58
129	Suggestive linkage of a chromosomal locus on 18p11 to cyclothymic temperament in bipolar disorder families. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 326-332.	1.7	27
130	Familial aggregation of postpartum mood symptoms in bipolar disorder pedigrees. Bipolar Disorders, 2008, 10, 38-44.	1.9	55
131	Promoter Variant in the GRK3 Gene Associated with Bipolar Disorder Alters Gene Expression. Biological Psychiatry, 2008, 64, 104-110.	1.3	25
132	Evidence of association between brain-derived neurotrophic factor gene and bipolar disorder. Psychiatric Genetics, 2008, 18, 267-274.	1.1	51
133	Genome-wide parametric linkage analyses of 644 bipolar pedigrees suggest susceptibility loci at chromosomes 16 and 20. Psychiatric Genetics, 2008, 18, 191-198.	1.1	14
134	Mood-Incongruent Psychotic Features in Bipolar Disorder: Familial Aggregation and Suggestive Linkage to 2p11-q14 and 13q21-33. American Journal of Psychiatry, 2007, 164, 236-247.	7.2	93
135	Further evidence for association of GRK3 to bipolar disorder suggests a second disease mutation. Psychiatric Genetics, 2007, 17, 315-322.	1.1	21
136	Association analysis of GRK3 gene promoter variants in cocaine abuse. Psychiatric Genetics, 2007, 17, 239-242.	1.1	6
137	The Pharmacogenetics of Lithium Response Depends upon Clinical Co-Morbidity. Molecular Diagnosis and Therapy, 2007, 11, 161-170.	3.8	55
138	New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nature Genetics, 2007, 39, 1045-1051.	21.4	288
139	Identification of additional variants within the human dopamine transporter gene provides further evidence for an association with bipolar disorder in two independent samples. Molecular Psychiatry, 2006, 11, 125-133.	7.9	120
140	Suggestive evidence for association of the circadian genesPERIOD3andARNTLwith bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 234-241.	1.7	254
141	Differential Regulation of Immediate-Early Gene Expression in the Prefrontal Cortex of Rats with a High vs Low Behavioral Response to Methamphetamine. Neuropsychopharmacology, 2006, 31, 2359-2367.	5.4	27
142	A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4552-4557.	7.1	159
143	Examination of the clock gene Cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence for linkage or association. Psychiatric Genetics, 2005, 15, 45-52.	1.1	38
144	TEMPS-A: validation of a short version of a self-rated instrument designed to measure variations in temperament. Journal of Affective Disorders, 2005, 85, 45-52.	4.1	313

#	Article	IF	Citations
145	Familiality of temperament in bipolar disorder: support for a genetic spectrum. Journal of Affective Disorders, 2005, 85, 153-168.	4.1	165
146	A comparison of recovered bipolar patients, healthy relatives of bipolar probands, and normal controls using the short TEMPS-A. Journal of Affective Disorders, 2005, 85, 147-151.	4.1	97
147	Temperament in the clinical differentiation of depressed bipolar and unipolar major depressive patients. Journal of Affective Disorders, 2005, 84, 219-223.	4.1	52
148	Cosegregation of Bipolar Disorder and Autosomal-Dominant Medullary Cystic Kidney Disease in a Large Family. American Journal of Psychiatry, 2005, 162, 1972-1974.	7.2	8
149	Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q. American Journal of Human Genetics, 2005, 77, 582-595.	6.2	218
150	Affective state and EEG sleep profile in response to rapid tryptophan depletion in recently recovered nonmedicated depressed individuals. Journal of Affective Disorders, 2004, 83, 253-262.	4.1	11
151	Genomics and the human genome project: implications for psychiatry. International Review of Psychiatry, 2004, 16, 294-300.	2.8	55
152	Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biological Psychiatry, 2004, 56, 18-23.	1.3	60
153	Update on the search for genes for bipolar disorder. Current Psychosis & Therapeutics Reports, 2003, 1, 62-66.	0.1	1
154	A quantitative neuromotor predictor of antidepressant non-response in patients with major depression. Journal of Affective Disorders, 2003, 77, 135-141.	4.1	47
155	Arguments for the genetic basis of the bipolar spectrum. Journal of Affective Disorders, 2003, 73, 183-197.	4.1	149
156	Rapid tryptophan depletion reverses phenelzine-induced suppression of REM sleep. Journal of Sleep Research, 2003, 12, 13-18.	3.2	28
157	Linkage of a bipolar disorder susceptibility locus to human chromosome 13q32 in a new pedigree series. Molecular Psychiatry, 2003, 8, 558-564.	7.9	29
158	Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Molecular Psychiatry, 2003, 8, 546-557.	7.9	112
159	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part III: Bipolar Disorder. American Journal of Human Genetics, 2003, 73, 49-62.	6.2	400
160	Genomewide Linkage Analyses of Bipolar Disorder: A New Sample of 250 Pedigrees from the National Institute of Mental Health Genetics Initiative. American Journal of Human Genetics, 2003, 73, 107-114.	6.2	202
161	Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics, 2003, 82, 511-520.	2.9	197
162	Some possible genetic parallels across alcoholism, bipolar disorder and schizophrenia Journal of Studies on Alcohol and Drugs, 2003, 64, 157-159.	2.3	16

#	Article	IF	Citations
163	Functional genomics approaches to understanding brain disorders. Pharmacogenomics, 2002, 3, 31-45.	1.3	20
164	A linkage disequilibrium study of bipolar disorder and microsatellite markers on 22q13. Psychiatric Genetics, 2002, 12, 231-235.	1.1	13
165	Finding Genes for Bipolar Disorder in the Functional Genomics Era: From Convergent Functional Genomics to Phenomics and Back. CNS Spectrums, 2002, 7, 215-226.	1.2	18
166	Effects of Rapid Tryptophan Depletion on Sleep Electroencephalogram and Mood in Subjects with Partially Remitted Depression on Bupropion. Neuropsychopharmacology, 2002, 27, 1016-1026.	5.4	21
167	A Scientific Opportunity. Science, 2001, 294, 957-957.	12.6	8
168	Evidence for linkage disequilibrium between the dopamine transporter and bipolar disorder. American Journal of Medical Genetics Part A, 2001, 105, 145-151.	2.4	141
169	Convergent functional genomics: application to bipolar disorder. Annals of Medicine, 2001, 33, 263-271.	3.8	26
170	A PEDIGREE OF ONE FAMILY WITH DELAYED SLEEP PHASE SYNDROME. Chronobiology International, 2001, 18, 831-840.	2.0	86
171	The Human Genome: Genetic Testing and Animal Models. American Journal of Psychiatry, 2001, 158, 1587-1587.	7.2	6
172	Responseâ<†. Neuropsychopharmacology, 2001, 25, 615.	5.4	1
173	Rapid Tryptophan Depletion Plus a Serotonin 1A Agonist Competing Effects on Sleep in Healthy Men. Neuropsychopharmacology, 2001, 25, S40-S44.	5.4	8
174	Health-Related Quality-of-Life Measure Enhances Acute Treatment Response Prediction in Depressed Inpatients. Journal of Clinical Psychiatry, 2001, 62, 261-268.	2.2	28
175	Relationship of Mood Disturbance to Cigarette Smoking Status Among 252 Patients With a Current Mood Disorder. Journal of Clinical Psychiatry, 2001, 62, 319-324.	2.2	26
176	An Open-Label, 12-Week Clinical and Sleep EEG Study of Nefazodone in Chronic Combat-Related Posttraumatic Stress Disorder. Journal of Clinical Psychiatry, 2001, 62, 789-796.	2.2	50
177	Clinical and Physiological Consequences of Rapid Tryptophan Depletion. Neuropsychopharmacology, 2000, 23, 601-622.	5.4	179
178	Preliminary evidence of an association between increased REM density and poor antidepressant response to partial sleep deprivation. Journal of Affective Disorders, 2000, 59, 77-83.	4.1	31
179	Sociodemographic predictors of temperament and character. Journal of Psychiatric Research, 2000, 34, 221-226.	3.1	26
180	Identifying a series of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiological Genomics, 2000, 4, 83-91.	2.3	184

#	Article	lF	CITATIONS
181	Sleep estimation from wrist activity in patients with major depression. Physiology and Behavior, 2000, 70, 49-53.	2.1	55
182	Recent progress in the search for genes for bipolar disorder. Current Psychiatry Reports, 1999, 1, 135-140.	4.5	23
183	Chromosome workshop: Chromosomes 11, 14, and 15. American Journal of Medical Genetics Part A, 1999, 88, 244-254.	2.4	53
184	Analysis of GNAZ gene polymorphism in bipolar affective disorder. , 1999, 88, 324-328.		19
185	Sleep electroencephalographic response to muscarinic and serotonin1A receptor probes in patients with major depression and in normal controls. Biological Psychiatry, 1998, 44, 21-33.	1.3	18
186	Effects of a Tryptophan-Free Amino Acid Drink Challenge on Normal Human Sleep Electroencephalogram and Mood. Biological Psychiatry, 1998, 43, 52-59.	1.3	77
187	A comparison Of descriptive characteristics of male outpatients and inpatients with affective disorders. International Clinical Psychopharmacology, 1998, 13, 245-252.	1.7	0
188	QUANTIFICATION OF DOPAMINE D1 AND D2 RECEPTOR mRNA LEVELS ASSOCIATED WITH THE DEVELOPMENT OF BEHAVIORAL SENSITIZATION IN AMPHETAMINE TREATED RATS. Neurochemistry International, 1997, 31, 131-137.	3.8	15
189	Dopamine transporter mRNA is up-regulated in the substantia nigra and the ventral tegmental area of amphetamine-sensitized rats. Neuroscience Letters, 1997, 236, 131-134.	2.1	41
190	Linkage studies suggest a possible locus for bipolar disorder near the velo-cardio-facial syndrome region on chromosome 22. , 1997, 74, 121-128.		82
191	The Genetics of Bipolar Disorder. Psychiatric Annals, 1997, 27, 285-292.	0.1	12
192	Sleep and dreams in Vietnam PTSD and depression. Biological Psychiatry, 1996, 39, 42-50.	1.3	192
193	Hippocampal glucocorticoid receptor mRNA is up-regulated by acute and down-regulated by chronic amphetamine treatment. Molecular Brain Research, 1996, 38, 156-160.	2.3	19
194	Genetic linkage study of bipolar disorder and the serotonin transporter. American Journal of Medical Genetics Part A, 1996, 67, 215-217.	2.4	42
195	Possible locus for bipolar disorder near the dopamine transporter on chromosome 5., 1996, 67, 533-540.		98
196	Comparison of descriptive variables for symptomatic volunteers and clinical patients with anxiety disorders. Anxiety, 1996, 2, 117-122.	0.4	7
197	A Comparison of Descriptive Variables for Clinical Patients and Symptomatic Volunteers With Depressive Disorders. Journal of Clinical Psychopharmacology, 1996, 16, 242-246.	1.4	20
198	Regional quantification of D1, D2, and D3 dopamine receptor mRNA in rat brain using a ribonuclease protection assay. Molecular Brain Research, 1995, 33, 97-103.	2.3	62

#	Article	IF	Citations
199	Regional quantification of dopamine transporter mRNA in rat brain using a ribonuclease protection assay. Neuroscience Letters, 1995, 200, 73-76.	2.1	12
200	No antidepressant effect of biperiden compared with placebo in depression: A double-blind 6-week clinical trial. Psychiatry Research, 1995, 58, 99-105.	3.3	35
201	A linkage study of distal chromosome 5q and bipolar disorder. Biological Psychiatry, 1994, 36, 223-229.	1.3	21
202	The cholinergic REM sleep induction test with pilocarpine in mildly depressed patients and normal controls. Biological Psychiatry, 1993, 33, 33-39.	1.3	21
203	A Genetic Linkage Study of Bipolar Disorder and 13 Markers on Chromosome 11 Including the D2 Dopamine Receptor. Neuropsychopharmacology, 1993, 9, 293-301.	5.4	20
204	Beneficial Effects of Nalmefene Augmentation in Neuroleptic-Stabilized Schizophrenic Patients. Neuropsychopharmacology, 1993, 9, 111-115.	5.4	30
205	Lack of association between an RFLP near the D2 dopamine receptor gene and severe alcoholism. Biological Psychiatry, 1992, 31, 285-290.	1.3	126
206	Effects of the acute administration of caffeine in patients with schizophrenia. Biological Psychiatry, 1990, 28, 35-40.	1.3	117
207	Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish. Nature, 1989, 342, 238-243.	27.8	448
208	Plasma Homovanillic Acid as an Index of Central Dopaminergic Activity: Studies in Schizophrenic Patients. Annals of the New York Academy of Sciences, 1988, 537, 339-346.	3.8	27
209	Performance of Schizophrenic Patients on Putative Neuropsychological tests of frontal Lobe Function. International Journal of Neuroscience, 1988, 42, 51-58.	1.6	99
210	Specific [3H]-n-methyl scopolamine binding without cholinergic function in cultured adult skin fibroblasts. Life Sciences, 1986, 38, 1399-1408.	4.3	11
211	Rapid-eye movement sleep and muscarinic receptor binding in rats are augmented during withdrawal from chronic scopolamine treatment. Life Sciences, 1986, 39, 2419-2427.	4.3	31
212	Muscarinic Receptor Density in Skin Fibroblasts and Autopsied Brain Tissue in Affective Disorder. Annals of the New York Academy of Sciences, 1986, 487, 143-149.	3.8	9
213	Kinetic evidence for decreased methionine adenosyltransferase activity in erythrocytes from schizophrenics. Journal of Neuroscience Research, 1982, 8, 99-103.	2.9	29
214	The overlapping of the spectra: overlapping genes and genetic models., 0,, 25-42.		0
215	The genetics of bipolar disorder. , 0, , 196-211.		0