
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837914/publications.pdf Version: 2024-02-01

FLICA D ZANIED

#	Article	lF	CITATIONS
1	Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. Critical Care, 2016, 20, 148.	5.8	276
2	Brain temperature, body core temperature, and intracranial pressure in acute cerebral damage. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 448-454.	1.9	252
3	The Ischemic Environment Drives Microglia and Macrophage Function. Frontiers in Neurology, 2015, 6, 81.	2.4	217
4	Results of a preclinical randomized controlled multicenter trial (pRCT): Anti-CD49d treatment for acute brain ischemia. Science Translational Medicine, 2015, 7, 299ra121.	12.4	207
5	Versatility of the complement system in neuroinflammation, neurodegeneration and brain homeostasis. Frontiers in Cellular Neuroscience, 2014, 8, 380.	3.7	171
6	Pyrexia in head-injured patients admitted to intensive care. Intensive Care Medicine, 2002, 28, 1555-1562.	8.2	159
7	Bone Marrow Mesenchymal Stromal Cells Drive Protective M2 Microglia Polarization After Brain Trauma. Neurotherapeutics, 2014, 11, 679-695.	4.4	140
8	Human umbilical cord blood mesenchymal stem cells protect mice brain after trauma*. Critical Care Medicine, 2011, 39, 2501-2510.	0.9	130
9	Neuroprotection in acute brain injury: an up-to-date review. Critical Care, 2015, 19, 186.	5.8	120
10	Targeting Mannose-Binding Lectin Confers Long-Lasting Protection With a Surprisingly Wide Therapeutic Window in Cerebral Ischemia. Circulation, 2012, 126, 1484-1494.	1.6	119
11	Shape descriptors of the "never resting―microglia in three different acute brain injury models in mice. Intensive Care Medicine Experimental, 2015, 3, 39.	1.9	117
12	Intracranial Pressure After Subarachnoid Hemorrhage*. Critical Care Medicine, 2015, 43, 168-176.	0.9	117
13	C1-inhibitor attenuates neurobehavioral deficits and reduces contusion volume after controlled cortical impact brain injury in mice*. Critical Care Medicine, 2009, 37, 659-665.	0.9	116
14	Fluid therapy in neurointensive care patients: ESICM consensus and clinical practice recommendations. Intensive Care Medicine, 2018, 44, 449-463.	8.2	113
15	Refractory intracranial hypertension and "second-tier―therapies in traumatic brain injury. Intensive Care Medicine, 2008, 34, 461-467.	8.2	110
16	Early modulation of pro-inflammatory microglia by minocycline loaded nanoparticles confers long lasting protection after spinal cord injury. Biomaterials, 2016, 75, 13-24.	11.4	110
17	Recombinant C1 inhibitor in brain ischemic injury. Annals of Neurology, 2009, 66, 332-342.	5.3	107
18	Monitoring brain tissue oxygen tension in brain-injured patients reveals hypoxic episodes in normal-appearing and in peri-focal tissue. Intensive Care Medicine, 2007, 33, 2136-2142.	8.2	105

#	Article	IF	CITATIONS
19	Time Course of Intracranial Hypertension after Traumatic Brain Injury. Journal of Neurotrauma, 2007, 24, 1339-1346.	3.4	95
20	The immunological response to traumatic brain injury. Journal of Neuroimmunology, 2019, 332, 112-125.	2.3	95
21	Single severe traumatic brain injury produces progressive pathology with ongoing contralateral white matter damage one year after injury. Experimental Neurology, 2018, 300, 167-178.	4.1	86
22	Macrophages are essential for maintaining a M2 protective response early after ischemic brain injury. Neurobiology of Disease, 2016, 96, 284-293.	4.4	82
23	Fractalkine Receptor Deficiency Is Associated with Early Protection but Late Worsening of Outcome following Brain Trauma in Mice. Journal of Neurotrauma, 2016, 33, 1060-1072.	3.4	75
24	Induction of a transmissible tau pathology by traumatic brain injury. Brain, 2018, 141, 2685-2699.	7.6	74
25	Impact of pyrexia on neurochemistry and cerebral oxygenation after acute brain injury. Journal of Neurology, Neurosurgery and Psychiatry, 2005, 76, 1135-1139.	1.9	66
26	Accuracy of intracranial pressure monitoring: systematic review and meta-analysis. Critical Care, 2015, 19, 420.	5.8	66
27	Protection of Brain Injury by Amniotic Mesenchymal Stromal Cell-Secreted Metabolites. Critical Care Medicine, 2016, 44, e1118-e1131.	0.9	66
28	Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer's mice. Cell Death and Differentiation, 2021, 28, 203-218.	11.2	63
29	Increased Hippocampal CA3 Vulnerability to Low-Level Kainic Acid following Lateral Fluid Percussion Injury. Journal of Neurotrauma, 2003, 20, 409-420.	3.4	62
30	Tumor Necrosis Factor in Traumatic Brain Injury: Effects of Genetic Deletion of p55 or p75 Receptor. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1182-1189.	4.3	62
31	Early ficolin-1 is a sensitive prognostic marker for functional outcome in ischemic stroke. Journal of Neuroinflammation, 2016, 13, 16.	7.2	58
32	Burnout in Intensive Care Unit Workers during the Second Wave of the COVID-19 Pandemic: A Single Center Cross-Sectional Italian Study. International Journal of Environmental Research and Public Health, 2021, 18, 6102.	2.6	58
33	Management of moderate to severe traumatic brain injury: an update for the intensivist. Intensive Care Medicine, 2022, 48, 649-666.	8.2	57
34	Changes of the GPR17 receptor, a new target for neurorepair, in neurons and glial cells in patients with traumatic brain injury. Purinergic Signalling, 2013, 9, 451-462.	2.2	54
35	Metabolic, Neurochemical, and Histologic Responses to Vibrissa Motor Cortex Stimulation after Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 900-910.	4.3	50
36	Stem cell transplantation as a therapeutic strategy for traumatic brain injury. Transplant Immunology, 2005, 15, 143-148.	1.2	49

#	Article	IF	CITATIONS
37	Virtual Reality for Traumatic Brain Injury. Frontiers in Neurology, 2018, 9, 345.	2.4	49
38	Neurofilament light chain levels in ventricular cerebrospinal fluid after acute aneurysmal subarachnoid haemorrhage. Journal of Neurology, Neurosurgery and Psychiatry, 2011, 82, 157-159.	1.9	48
39	Glial Cells Drive Preconditioning-Induced Blood-Brain Barrier Protection. Stroke, 2011, 42, 1445-1453.	2.0	44
40	Immunosuppression does not affect human bone marrow mesenchymal stromal cell efficacy after transplantation in traumatized mice brain. Neuropharmacology, 2014, 79, 119-126.	4.1	44
41	Intracranial pressure monitoring in intensive care: clinical advantages of a computerized system over manual recording. Critical Care, 2007, 11, R7.	5.8	38
42	c-Jun N-Terminal Kinase Pathway Activation in Human and Experimental Cerebral Contusion. Journal of Neuropathology and Experimental Neurology, 2009, 68, 964-971.	1.7	38
43	Arterio-Jugular Difference of Oxygen Content and Outcome After Head Injury. Anesthesia and Analgesia, 2004, 99, 230-234.	2.2	37
44	Intravenous infusion of human bone marrow mesenchymal stromal cells promotes functional recovery and neuroplasticity after ischemic stroke in mice. Scientific Reports, 2017, 7, 6962.	3.3	36
45	Pharmacological inhibition of mannose-binding lectin ameliorates neurobehavioral dysfunction following experimental traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 938-950.	4.3	35
46	Mesenchymal Stem Cell Therapy in Intracerebral Haemorrhagic Stroke. Current Medicinal Chemistry, 2018, 25, 2176-2197.	2.4	33
47	Optic Nerve Sheath Diameter is not Related to Intracranial Pressure in Subarachnoid Hemorrhage Patients. Neurocritical Care, 2020, 33, 491-498.	2.4	32
48	Brain Oxygen Tension, Oxygen Supply, and Oxygen Consumption During Arterial Hyperoxia in a Model of Progressive Cerebral Ischemia. Journal of Neurotrauma, 2001, 18, 163-174.	3.4	31
49	Rethinking Neuroprotection in Severe Traumatic Brain Injury: Toward Bedside Neuroprotection. Frontiers in Neurology, 2017, 8, 354.	2.4	31
50	Heart-fatty acid-binding and tau proteins relate to brain injury severity and long-term outcome in subarachnoid haemorrhage patients. British Journal of Anaesthesia, 2013, 111, 424-432.	3.4	29
51	Ficolin-3–mediated lectin complement pathway activation in patients with subarachnoid hemorrhage. Neurology, 2014, 82, 126-134.	1.1	29
52	Label-free monitoring of tissue biochemistry following traumatic brain injury using Raman spectroscopy. Analyst, The, 2017, 142, 132-139.	3.5	26
53	Efficacy of acute administration of inhaled argon on traumatic brain injury in mice. British Journal of Anaesthesia, 2021, 126, 256-264.	3.4	26
54	Cerebrospinal fluid pentraxin 3 early after subarachnoid hemorrhage is associated with vasospasm. Intensive Care Medicine, 2011, 37, 302-309.	8.2	25

#	Article	IF	CITATIONS
55	Human brain trauma severity is associated with lectin complement pathway activation. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 794-807.	4.3	24
56	Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury. Journal of Immunology, 2021, 207, 90-100.	0.8	24
57	Fluid Management in Acute Brain Injury. Current Neurology and Neuroscience Reports, 2018, 18, 74.	4.2	23
58	Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations. Journal of Neurotrauma, 2021, 38, 2514-2529.	3.4	23
59	Differential transgene expression patterns in Alzheimer mouse models revealed by novel human amyloid precursor proteinâ€specific antibodies. Aging Cell, 2016, 15, 953-963.	6.7	22
60	Modelling human pathology of traumatic brain injury in animal models. Journal of Internal Medicine, 2019, 285, 594-607.	6.0	22
61	Neuroprotection in Traumatic Brain Injury: Mesenchymal Stromal Cells can Potentially Overcome Some Limitations of Previous Clinical Trials. Frontiers in Neurology, 2018, 9, 885.	2.4	20
62	In-depth characterization of a mouse model of post-traumatic epilepsy for biomarker and drug discovery. Acta Neuropathologica Communications, 2021, 9, 76.	5.2	20
63	Effect of traumatic brain injury on cognitive function in mice lacking p55 and p75 tumor necrosis factor receptors. Acta Neurochirurgica Supplementum, 2008, 102, 409-413.	1.0	20
64	Current and Emerging Technologies for Probing Molecular Signatures of Traumatic Brain Injury. Frontiers in Neurology, 2017, 8, 450.	2.4	18
65	Ultrasound-tagged near-infrared spectroscopy does not disclose absent cerebral circulation in brain-dead adults. British Journal of Anaesthesia, 2018, 121, 588-594.	3.4	18
66	Increased levels of CSF heart-type fatty acid-binding protein and tau protein after aneurysmal subarachnoid hemorrhage. Acta Neurochirurgica Supplementum, 2008, 102, 339-343.	1.0	18
67	Oxygen and Carbon Dioxide in the Cerebral Circulation during Progression to Brain Death. Anesthesiology, 2005, 103, 957-961.	2.5	17
68	Sixâ€Month Ischemic Mice Show Sensorimotor and Cognitive Deficits Associated with Brain Atrophy and Axonal Disorganization. CNS Neuroscience and Therapeutics, 2013, 19, 695-704.	3.9	17
69	Brain Protection after Anoxic Brain Injury: Is Lactate Supplementation Helpful?. Cells, 2021, 10, 1714.	4.1	17
70	Neuroprotective effect of C1-inhibitor following traumatic brain injury in mice. Acta Neurochirurgica Supplementum, 2008, 102, 381-384.	1.0	17
71	Spectroscopic detection of traumatic brain injury severity and biochemistry from the retina. Biomedical Optics Express, 2020, 11, 6249.	2.9	16
72	The Genetics of Small-Vessel Disease. Current Medicinal Chemistry, 2012, 19, 4124-4141.	2.4	14

#	Article	IF	CITATIONS
73	Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. Npj Regenerative Medicine, 2021, 6, 71.	5.2	14
74	My paper 20Âyears later: cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Intensive Care Medicine, 2015, 41, 412-417.	8.2	13
75	Placenta-Derived Cells for Acute Brain Injury. Cell Transplantation, 2018, 27, 151-167.	2.5	12
76	Ageing is associated with maladaptive immune response and worse outcome after traumatic brain injury. Brain Communications, 2022, 4, fcac036.	3.3	12
77	Head injury, subarachnoid hemorrhage and intracranial pressure monitoring in Italy. Acta Neurochirurgica, 2003, 145, 761-765.	1.7	11
78	Acute and Persistent Alterations of Cerebellar Inflammatory Networks and Glial Activation in a Rat Model of Pediatric Mild Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1315-1330.	3.4	11
79	Intracranial pressure monitoring for traumatic brain injury: available evidence and clinical implications. Minerva Anestesiologica, 2008, 74, 197-203.	1.0	9
80	Cerebral Veno-Arterial pCO2 Difference as an Estimator of Uncompensated Cerebral Hypoperfusion. , 2002, 81, 201-204.		8
81	Prognostic Value of a Combination of Circulating Biomarkers in Critically Ill Patients with Traumatic Brain Injury: Results from the European CREACTIVE Study. Journal of Neurotrauma, 2021, 38, 2667-2676.	3.4	7
82	Clinical Results and Outcome Improvement Over Time in Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 2019-2025.	3.4	5
83	Longitudinal Molecular Magnetic Resonance Imaging of Endothelial Activation after Severe Traumatic Brain Injury. Journal of Clinical Medicine, 2019, 8, 1134.	2.4	5
84	C. elegans detects toxicity of traumatic brain injury generated tau. Neurobiology of Disease, 2021, 153, 105330.	4.4	5
85	Cerebrospinal Fluid and Arterial Acid–Base Equilibrium of Spontaneously Breathing Patients with Aneurismal Subarachnoid Hemorrhage. Neurocritical Care, 2022, 37, 102-110.	2.4	5
86	Internalization of nanopolymeric tracers does not alter characteristics of placental cells. Journal of Cellular and Molecular Medicine, 2016, 20, 1036-1048.	3.6	4
87	Angiotensin-(1–7) as a Potential Therapeutic Strategy for Delayed Cerebral Ischemia in Subarachnoid Hemorrhage. Frontiers in Immunology, 2022, 13, 841692.	4.8	4
88	Mannose binding lectin as a target for cerebral ischemic injury. Molecular Immunology, 2011, 48, 1677.	2.2	2
89	The ratio between arterio-venous PCO2 difference and arterio-jugular oxygen difference as estimator of critical cerebral hypoperfusion. Minerva Anestesiologica, 2006, 72, 543-9.	1.0	2
90	Hypothermia for brain protection in the non-cardiac arrest patient. Minerva Anestesiologica, 2008, 74, 315-8.	1.0	2

#	Article	IF	CITATIONS
91	Comment on "Levels of vancomycin in the cerebral interstitial fluid after severe head injury―by Caricato et al Intensive Care Medicine, 2006, 32, 1096-1096.	8.2	0
92	Mannose-binding lectin and lectin pathway in subarachnoid hemorrhage patients. Immunobiology, 2012, 217, 1185.	1.9	0
93	Targeting MBL in cerebral ischemia induces long lasting protection with a wide therapeutic window. Immunobiology, 2012, 217, 1207.	1.9	0
94	Ficolin-3 mediated lectin complement pathway activation is related to pathology and outcome in subarachnoid haemorrhage patients. Molecular Immunology, 2013, 56, 276-277.	2.2	0
95	Development and spread of tau pathology after TBI. Journal of the Neurological Sciences, 2019, 405, 41.	0.6	Ο
96	Vascular Issues in Neurodegeneration and Injury. , 2009, , 33-41.		0