
Ernesto Martinez-Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3837586/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microsomal prostaglandin E synthaseâ \in I is involved in the metabolic and cardiovascular alterations associated with obesity. British Journal of Pharmacology, 2022, 179, 2733-2753.	5.4	6
2	Oxidative Stress in Obesity. Antioxidants, 2022, 11, 639.	5.1	8
3	Mitochondrial Oxidative Stress Promotes Cardiac Remodeling in Myocardial Infarction through the Activation of Endoplasmic Reticulum Stress. Antioxidants, 2022, 11, 1232.	5.1	5
4	Antifibrotic effect of novel neutrophil gelatinase-associated lipocalin inhibitors in cardiac and renal disease models. Scientific Reports, 2021, 11, 2591.	3.3	11
5	Role of endoplasmic reticulum stress in renal damage after myocardial infarction. Clinical Science, 2021, 135, 143-159.	4.3	3
6	Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants, 2021, 10, 406.	5.1	13
7	Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells, 2021, 10, 1824.	4.1	13
8	The Interplay of Mitochondrial Oxidative Stress and Endoplasmic Reticulum Stress in Cardiovascular Fibrosis in Obese Rats. Antioxidants, 2021, 10, 1274.	5.1	21
9	Soluble St2 Induces Cardiac Fibroblast Activation and Collagen Synthesis via Neuropilin-1. Cells, 2020, 9, 1667.	4.1	16
10	The Interaction between Mitochondrial Oxidative Stress and Gut Microbiota in the Cardiometabolic Consequences in Diet-Induced Obese Rats. Antioxidants, 2020, 9, 640.	5.1	23
11	The Crosstalk between Cardiac Lipotoxicity and Mitochondrial Oxidative Stress in the Cardiac Alterations in Diet-Induced Obesity in Rats. Cells, 2020, 9, 451.	4.1	24
12	The role of mitochondrial oxidative stress in the metabolic alterations in dietâ€induced obesity in rats. FASEB Journal, 2019, 33, 12060-12072.	0.5	28
13	Soluble ST2 promotes oxidative stress and inflammation in cardiac fibroblasts: an <i>in vitro</i> and <i>in vivo</i> study in aortic stenosis. Clinical Science, 2019, 133, 1537-1548.	4.3	25
14	Myocardial Injury After Ischemia/Reperfusion Is Attenuated By Pharmacological Galectin-3 Inhibition. Scientific Reports, 2019, 9, 9607.	3.3	35
15	The Impact of Cardiac Lipotoxicity on Cardiac Function and Mirnas Signature in Obese and Non-Obese Rats with Myocardial Infarction. Scientific Reports, 2019, 9, 444.	3.3	19
16	CT-1 (Cardiotrophin-1)-Gal-3 (Galectin-3) Axis in Cardiac Fibrosis and Inflammation. Hypertension, 2019, 73, 602-611.	2.7	78
17	Abstract 010: Neutrophil Gelatinase Associated Lipocalin From Immune Cells is Involved in Renal Damages Induced by Mineralocorticoid Excess. Hypertension, 2019, 74, .	2.7	0
18	Galectin-3 down-regulates antioxidant peroxiredoxin-4 in human cardiac fibroblasts: a new pathway to induce cardiac damage. Clinical Science, 2018, 132, 1471-1485.	4.3	37

#	Article	IF	CITATIONS
19	Inhibition of galectin-3 ameliorates the consequences of cardiac lipotoxicity in a rat model of diet-induced obesity. DMM Disease Models and Mechanisms, 2018, 11, .	2.4	28
20	Neutrophil Gelatinase-Associated Lipocalin from immune cells is mandatory for aldosterone-induced cardiac remodeling and inflammation. Journal of Molecular and Cellular Cardiology, 2018, 115, 32-38.	1.9	47
21	Aldosterone Impairs Mitochondrial Function in Human Cardiac Fibroblasts via A-Kinase Anchor Protein 12. Scientific Reports, 2018, 8, 6801.	3.3	22
22	The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in observed in observed in observed rats. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2018, 30, 10-20.	0.2	0
23	A role for fumarate hydratase in mediating oxidative effects of galectin-3 in human cardiac fibroblasts. International Journal of Cardiology, 2018, 258, 217-223.	1.7	17
24	Galectin-3 pharmacological inhibition attenuates early renal damage in spontaneously hypertensive rats. Journal of Hypertension, 2018, 36, 368-376.	0.5	34
25	The impact of obesity in the cardiac lipidome and its consequences in the cardiac damage observed in obese rats. ClĀnica E Investigación En Arteriosclerosis, 2018, 30, 10-20.	0.8	3
26	More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clinical Science, 2018, 132, 909-923.	4.3	98
27	High levels of circulating TNFR1 increase the risk of allâ€cause mortality and progression of renal disease in type 2 diabetic nephropathy. Nephrology, 2017, 22, 354-360.	1.6	16
28	A role for galectin-3Âin the development of early molecular alterations in short-term aortic stenosis. Clinical Science, 2017, 131, 935-949.	4.3	19
29	Aldosterone Target NGAL (Neutrophil Gelatinase–Associated Lipocalin) Is Involved in Cardiac Remodeling After Myocardial Infarction Through NFκB Pathway. Hypertension, 2017, 70, 1148-1156.	2.7	67
30	Differential Proteomics Identifies Reticulocalbin-3 as a Novel Negative Mediator of Collagen Production in Human Cardiac Fibroblasts. Scientific Reports, 2017, 7, 12192.	3.3	29
31	Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts. Journal of Proteomics, 2017, 166, 93-100.	2.4	9
32	The role of oxidative stress in the crosstalk between leptin and mineralocorticoid receptor in the cardiac fibrosis associated with obesity. Scientific Reports, 2017, 7, 16802.	3.3	32
33	Beneficial Effects of Galectin-3 Blockade in Vascular and Aortic Valve Alterations in an Experimental Pressure Overload Model. International Journal of Molecular Sciences, 2017, 18, 1664.	4.1	19
34	The endothelial αENaC contributes to vascular endothelial function in vivo. PLoS ONE, 2017, 12, e0185319.	2.5	47
35	Galectin-3 Blockade Reduces Renal Fibrosis in Two Normotensive Experimental Models of Renal Damage. PLoS ONE, 2016, 11, e0166272.	2.5	43
36	Role for Galectinâ€3 in Calcific Aortic Valve Stenosis. Journal of the American Heart Association, 2016, 5,	3.7	55

#	Article	IF	CITATIONS
37	0226 : Neutrophil gelatinase – associated lipocalin mediates the profibrotic effects of aldosterone in human cardiac fibroblasts. Archives of Cardiovascular Diseases Supplements, 2016, 8, 248.	0.0	0
38	The lysyl oxidase inhibitor (β-aminopropionitrile) reduces leptin profibrotic effects and ameliorates cardiovascular remodeling in diet-induced obesity in rats. Journal of Molecular and Cellular Cardiology, 2016, 92, 96-104.	1.9	52
39	Galectin-3 inhibition prevents adipose tissue remodelling in obesity. International Journal of Obesity, 2016, 40, 1034-1038.	3.4	41
40	Neutrophil Gelatinase–Associated Lipocalin, a Novel Mineralocorticoid Biotarget, Mediates Vascular Profibrotic Effects of Mineralocorticoids. Hypertension, 2015, 66, 158-166.	2.7	75
41	Galectin-3 Blockade Inhibits Cardiac Inflammation and Fibrosis in Experimental Hyperaldosteronism and Hypertension. Hypertension, 2015, 66, 767-775.	2.7	129
42	Interleukin-33/ST2 system attenuates aldosterone-induced adipogenesis and inflammation. Molecular and Cellular Endocrinology, 2015, 411, 20-27.	3.2	26
43	Calectin-3 Participates in Cardiovascular Remodeling Associated With Obesity. Hypertension, 2015, 66, 961-969.	2.7	68
44	The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats. DMM Disease Models and Mechanisms, 2015, 8, 543-551.	2.4	40
45	The Impact of Galectin-3 Inhibition onÂAldosterone-Induced Cardiac and RenalÂInjuries. JACC: Heart Failure, 2015, 3, 59-67.	4.1	164
46	P484The inhibition of lysyl oxidase improves the cardiovascular remodeling associated with obesity in rats. Cardiovascular Research, 2014, 103, S88.4-S88.	3.8	0
47	The potential role of leptin in the vascular remodeling associated with obesity. International Journal of Obesity, 2014, 38, 1565-1572.	3.4	47
48	Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress. Journal of Hypertension, 2014, 32, 1104-1114.	0.5	107
49	Leptin, a mediator of cardiac damage associated with obesity. Hormone Molecular Biology and Clinical Investigation, 2014, 18, 3-14.	0.7	21
50	The inhibition of lysyl oxidase improves metabolic alterations and adipose tissue disturbances in obese animals. Atherosclerosis, 2014, 235, e25.	0.8	2
51	Galectin-3 Mediates Aldosterone-Induced Vascular Fibrosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 67-75.	2.4	312
52	Relevance of vascular peroxisome proliferatorâ€activated receptor γ coactivatorâ€1α to molecular alterations in atherosclerosis. Experimental Physiology, 2013, 98, 999-1008.	2.0	8
53	A Role for Soluble ST2 in Vascular Remodeling Associated with Obesity in Rats. PLoS ONE, 2013, 8, e79176.	2.5	37
54	The Effects of Adiponectin and Leptin on Human Endothelial Cell Proliferation: A Live-Cell Study. Journal of Vascular Research, 2012, 49, 111-122.	1.4	12

#	Article	IF	CITATIONS
55	The impact of bariatric surgery on renal and cardiac functions in morbidly obese patients. Nephrology Dialysis Transplantation, 2012, 27, iv53-iv57.	0.7	22
56	DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy. PLoS ONE, 2012, 7, e41545.	2.5	22
57	Efecto del tratamiento con candesartan sobre los mecanismos y factores implicados en el desarrollo de la enfermedad cardiovascular asociada a sobrepeso y exceso de tejido adiposo visceral en la rata. ClÃnica E Investigación En Arteriosclerosis, 2011, 23, 55-61.	0.8	0
58	Aldosterone and the cardiovascular system: a dangerous association. Hormone Molecular Biology and Clinical Investigation, 2010, 4, 539-48.	0.7	2
59	Mineralocorticoid Receptor and Leptin: A Dangerous Liaison in the Obese Heart. , 0, , .		0
60	Editorial: New Advances in Cardiorenal Syndrome. Frontiers in Cardiovascular Medicine, 0, 9, .	2.4	1