Domniki Asimaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3836414/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toppling of a Trona Pinnacles Spire following the MwÂ5.5 Ridgecrest Aftershock of June 2020. Seismological Research Letters, 2022, 93, 1768-1776.	1.9	2
2	Data-Driven Synthesis of Broadband Earthquake Ground Motions Using Artificial Intelligence. Bulletin of the Seismological Society of America, 2022, 112, 1979-1996.	2.3	11
3	<i>P</i> - and <i>S</i> -wave velocity estimation by ensemble Kalman inversion of dispersion data for strong motion stations in California. Geophysical Journal International, 2022, 231, 536-551.	2.4	3
4	Threeâ€dimensional nonlinear soil–structure interaction for Rayleigh wave incidence in layered soils. Earthquake Engineering and Structural Dynamics, 2022, 51, 2752-2770.	4.4	10
5	Seismic harmonic response of inhomogeneous soil: scaling analysis. Geotechnique, 2021, 71, 392-405.	4.0	7
6	Deterministic ground motion simulations with shallow crust nonlinearity at Garner Valley in Southern California. Earthquake Engineering and Structural Dynamics, 2021, 50, 43-59.	4.4	6
7	A systematic analysis of basin effects on surface ground motion. Soil Dynamics and Earthquake Engineering, 2021, 141, 106490.	3.8	10
8	Linear one-dimensional site response analysis in the presence of stiffness-less free surface for certain power-law heterogeneities. Soil Dynamics and Earthquake Engineering, 2021, 141, 106530.	3.8	2
9	Applications of the J-integral to dynamical problems in geotechnical engineering. Journal of the Mechanics and Physics of Solids, 2021, 150, 104353.	4.8	0
10	Optimization of frequency domain impedances for time-domain response analyses of building structures with rigid shallow foundations. Earthquake Spectra, 2021, 37, 1955-1979.	3.1	2
11	Regional-Scale Geohazards Evaluation for Risk Assessment of Natural Gas Storage and Transmission Infrastructure. , 2021, , .		0
12	Site Characterization at Downhole Arrays by Joint Inversion of Dispersion Data and Acceleration Time Series. Bulletin of the Seismological Society of America, 2020, 110, 1323-1337.	2.3	9
13	Exact seismic response of smooth rigid retaining walls resting on stiff soil. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44, 1750-1769.	3.3	5
14	Smooth Nonlinear Hysteresis Model for Coupled Biaxial Soil-Pipe Interaction in Sandy Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	3.0	5
15	Investigating the spatial variability of ground motions during the 2017 Mw 7.1 Puebla-Mexico City earthquake via idealized simulations of basin effects. Soil Dynamics and Earthquake Engineering, 2020, 132, 106073.	3.8	13
16	The SAFER geodatabase for the Kathmandu Valley: Geotechnical and geological variability. Earthquake Spectra, 2020, 36, 1549-1569.	3.1	12
17	On the fundamental resonant mode of inhomogeneous soil deposits. Soil Dynamics and Earthquake Engineering, 2020, 135, 106190.	3.8	6

18 Mexico City Basin Effects: Past, Present, and Future. , 2019, , .

ΟΟΜΝΙΚΙ ΑSIMAKI

#	Article	IF	CITATIONS
19	Site effects in Mexico City basin: Past and present. Soil Dynamics and Earthquake Engineering, 2019, 121, 369-382.	3.8	42
20	How topography-dependent are topographic effects? Complementary numerical modeling of centrifuge experiments. Soil Dynamics and Earthquake Engineering, 2019, 116, 654-667.	3.8	15
21	Parametric estimation of dispersive viscoelastic layered media with application to structural health monitoring. Soil Dynamics and Earthquake Engineering, 2018, 105, 204-223.	3.8	11
22	A Generic Velocity Profile for Basin Sediments in California Conditioned on VS30. Seismological Research Letters, 2018, 89, 1397-1409.	1.9	12
23	Basin Effects in Strong Ground Motion: A Case Study from the 2015 Gorkha, Nepal, Earthquake. , 2018, ,		6
24	On the Applicability of Shear Strain Index as a Proxy for Site Response Nonlinearity. , 2018, , .		2
25	On the complexity of seismic waves trapped in irregular topographies. Soil Dynamics and Earthquake Engineering, 2018, 114, 424-437.	3.8	38
26	A Nonlinear Model Inversion to Estimate Dynamic Soil Stiffness of Building Structures. , 2018, , .		4
27	A Quasi-Static Displacement-Based Approximation of Seismic Earth Pressures on Rigid Walls. , 2018, , .		Ο
28	Bayesian Estimation of Nonlinear Soil Model Parameters Using Centrifuge Experimental Data. , 2018, , .		3
29	A Modified Uniaxial Bouc-Wen Model for the Simulation of Transverse Lateral Pipe-Cohesionless Soil Interaction. , 2018, , .		3
30	Investigating the Applicability of Integrated Hydrological Modeling for Mapping Regional Liquefaction Hazard. , 2018, , .		0
31	Parametric Estimation of Wave Dispersion for System Identification of Building Structures. Lecture Notes in Civil Engineering, 2018, , 791-802.	0.4	0
32	Topography Effects Are Not Dominated by Ground Surface Geometry: A Site Effects Paradox. , 2017, , .		1
33	From Stiffness to Strength: Formulation and Validation of a Hybrid Hyperbolic Nonlinear Soil Model for Siteâ€Response Analyses. Bulletin of the Seismological Society of America, 2017, 107, 1336-1355.	2.3	39
34	Characterizing the Kathmandu Valley sediment response through strong motion recordings of the 2015 Gorkha earthquake sequence. Tectonophysics, 2017, 714-715, 146-157.	2.2	37
35	Observations and Simulations of Basin Effects in the Kathmandu Valley during the 2015 Gorkha, Nepal, Earthquake Sequence. Earthquake Spectra, 2017, 33, 35-53.	3.1	27
36	International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN): Verification Phase Based on Canonical Cases. Bulletin of the Seismological Society of America, 2016, 106, 2112-2135.	2.3	91

ΟΟΜΝΙΚΙ ΑSIMAKI

#	Article	IF	CITATIONS
37	Topographic proxies from 2-D numerical analyses. Bulletin of Earthquake Engineering, 2016, 14, 2959-2975.	4.1	5
38	Geotechnical Effects of the 2015 MagnitudeÂ7.8 Gorkha, Nepal, Earthquake and Aftershocks. Seismological Research Letters, 2015, 86, 1514-1523.	1.9	55
39	Bias assessment in Incremental Dynamic Analysis due to record scaling. Soil Dynamics and Earthquake Engineering, 2014, 67, 158-168.	3.8	33
40	Ground-Motion Observations at Hotel Montana during the M 7.0 2010 Haiti Earthquake: Topography or Soil Amplification?. Bulletin of the Seismological Society of America, 2013, 103, 2577-2590.	2.3	73
41	Soil–pile–structure interaction simulations in liquefiable soils via dynamic macroelements: Formulation and validation. Soil Dynamics and Earthquake Engineering, 2013, 47, 92-107.	3.8	23
42	Site Effects in Structural Response Predictions of Inelastic SDOF Oscillators. Earthquake Spectra, 2012, 28, 859-883.	3.1	5
43	Site Effects and Damage Patterns. Earthquake Spectra, 2012, 28, 55-74.	3.1	30
44	Effects of Ground Failure on Buildings, Ports, and Industrial Facilities. Earthquake Spectra, 2012, 28, 97-118.	3.1	20
45	Time-domain forward and inverse modeling of lossy soils with frequency-independent Q for near-surface applications. Soil Dynamics and Earthquake Engineering, 2012, 43, 139-159.	3.8	9
46	Site- and ground motion-dependent nonlinear effects in seismological model predictions. Soil Dynamics and Earthquake Engineering, 2012, 32, 143-151.	3.8	29
47	A generalized hysteresis model for biaxial response of pile foundations in sands. Soil Dynamics and Earthquake Engineering, 2012, 32, 56-70.	3.8	13
48	A Wavelet-based Seismogram Inversion Algorithm for the In Situ Characterization of Nonlinear Soil Behavior. Pure and Applied Geophysics, 2011, 168, 1669-1691.	1.9	24
49	Sustainable development and energy geotechnology — Potential roles for geotechnical engineering. KSCE Journal of Civil Engineering, 2011, 15, 611-621.	1.9	41
50	Site Effects in Ground Motion Synthetics for Structural Performance Predictions. Computational Methods in Applied Sciences (Springer), 2011, , 67-97.	0.3	0
51	Simulating soil stiffness degradation in transient site response predictions. Soil Dynamics and Earthquake Engineering, 2010, 30, 299-309.	3.8	3
52	Site- and Motion-Dependent Parametric Uncertainty of Site-Response Analyses in Earthquake Simulations. Bulletin of the Seismological Society of America, 2010, 100, 954-968.	2.3	54
53	Temporal Changes in Site Response Associated with the Strong Ground Motion of the 2004 Mw 6.6 Mid-Niigata Earthquake Sequences in Japan. Bulletin of the Seismological Society of America, 2009, 99, 3487-3495.	2.3	43
54	A simplified model for lateral response of large diameter caisson foundations—Linear elastic formulation. Soil Dynamics and Earthquake Engineering, 2009, 29, 268-291.	3.8	83

DOMNIKI ASIMAKI

#	Article	IF	CITATIONS
55	Seismic response of bridge pier on rigid caisson foundation in soil stratum. Earthquake Engineering and Engineering Vibration, 2008, 7, 33-43.	2.3	33
56	Integrating Soil-Structure Interaction Analyses of Pile-Supported Wharfs in Seismic Risk Management of Port Systems. , 2008, , .		4
57	A Simplified Model for the Linear Elastic Analysis of Laterally Loaded Caissons. , 2008, , .		0
58	Site Amplification and Attenuation via Downhole Array Seismogram Inversion: A Comparative Study of the 2003 Miyagi-Oki Aftershock Sequence. Bulletin of the Seismological Society of America, 2008, 98, 301-330.	2.3	65
59	Quantifying Nonlinearity Susceptibility via Site-Response Modeling Uncertainty at Three Sites in the Los Angeles Basin. Bulletin of the Seismological Society of America, 2008, 98, 2364-2390.	2.3	40
60	Modeling Nonlinear Site Response Uncertainty in the Los Angeles Basin. , 2008, , .		1
61	Modified Topographic Amplification Factors for a Single-Faced Slope due to Kinematic Soil-Structure Interaction. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2007, 133, 1414-1431.	3.0	34
62	Inverse analysis of weak and strong motion downhole array data from the Mw7.0 Sanriku-Minami earthquake. Soil Dynamics and Earthquake Engineering, 2007, 27, 73-92.	3.8	24
63	Inverse Analysis of Weak and Strong Motion Downhole Array Data. , 2007, , 271-315.		1
64	Spatial Variability of Soil Properties in Forward and Inverse Site Response Analyses. , 2006, , 1.		1
65	A Hybrid Optimization Algorithm for Downhole Seismogram Inversion: Theory and Applications. , 2006, , 1.		0
66	Site-Response Estimation for the 2003 Miyagi-Oki Earthquake Sequence Considering Nonlinear Site Response. Bulletin of the Seismological Society of America, 2006, 96, 1474-1482.	2.3	35
67	Attenuation and Velocity Structure for Site Response Analyses via Downhole Seismogram Inversion. Pure and Applied Geophysics, 2006, 163, 81-118.	1.9	41
68	System identification of layered profiles through downhole array seismogram inversion. , 2006, , .		0
69	Effects of Local Soil Conditions on the Topographic Aggravation of Seismic Motion: Parametric Investigation and Recorded Field Evidence from the 1999 Athens Earthquake. Bulletin of the Seismological Society of America, 2005, 95, 1059-1089.	2.3	135
70	Wave propagation and soil–structure interaction on a cliff crest during the 1999 Athens Earthquake. Soil Dynamics and Earthquake Engineering, 2005, 25, 513-527.	3.8	47
71	Soil-Dependent Topographic Effects: A Case Study from the 1999 Athens Earthquake. Earthquake Spectra, 2005, 21, 929-966.	3.1	55
72	Title is missing!. Journal of Earthquake Engineering, 2004, 8, 1.	2.5	4

DOMNIKI ASIMAKI

#	Article	IF	CITATIONS
73	SOIL AND TOPOGRAPHIC AMPLIFICATION ON CANYON BANKS AND THE 1999 ATHENS EARTHQUAKE. Journal of Earthquake Engineering, 2004, 8, 1-43.	2.5	153
74	Site effects and soil-structure interaction in the 1999, Athens earthquake. , 2004, , 457-466.		0
75	EFFECTS OF SPATIAL VARIABILITY OF SOIL PROPERTIES ON SURFACE GROUND MOTION. Journal of Earthquake Engineering, 2003, 7, 1-44.	2.5	39
76	Title is missing!. Journal of Earthquake Engineering, 2003, 7, 1.	2.5	1
77	Seismic Simulation of Inelastic Soils via Frequency-Dependent Moduli and Damping. Journal of Engineering Mechanics - ASCE, 2002, 128, 34-47.	2.9	96
78	An equivalent linear algorithm with frequency- and pressure-dependent moduli and damping for the seismic analysis of deep sites. Soil Dynamics and Earthquake Engineering, 2002, 22, 959-965.	3.8	56
79	Model for Dynamic Shear Modulus and Damping for Granular Soils. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2000, 126, 859-869.	3.0	68
80	Predicting Vp and constrained modulus reduction curve based on Vs and shear modulus reduction curve in accordance with poroelastic theory. Geotechnique, 0, , 1-39.	4.0	1
81	Application of ray methods to one-dimensional site response of inhomogeneous soil deposits. Geotechnique, 0, , 1-28.	4.0	1