List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3833415/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Immunophenotype of Human Adipose-Derived Cells: Temporal Changes in Stromal-Associated and Stem<br>Cell–Associated Markers. Stem Cells, 2006, 24, 376-385.                                                      | 3.2 | 1,007     |
| 2  | The Immunogenicity of Human Adiposeâ€Derived Cells: Temporal Changes In Vitro. Stem Cells, 2006, 24,<br>1246-1253.                                                                                              | 3.2 | 490       |
| 3  | Playing with bone and fat. Journal of Cellular Biochemistry, 2006, 98, 251-266.                                                                                                                                 | 2.6 | 471       |
| 4  | Characterization of Peripheral Circadian Clocks in Adipose Tissues. Diabetes, 2006, 55, 962-970.                                                                                                                | 0.6 | 443       |
| 5  | Secretome of Primary Cultures of Human Adipose-derived Stem Cells. Molecular and Cellular Proteomics, 2007, 6, 18-28.                                                                                           | 3.8 | 189       |
| 6  | Interferon-Î <sup>3</sup> -mediated Activation and Ubiquitin-Proteasome-dependent Degradation of PPARÎ <sup>3</sup> in<br>Adipocytes. Journal of Biological Chemistry, 2002, 277, 4062-4068.                    | 3.4 | 165       |
| 7  | Interferon-Î <sup>3</sup> -induced Regulation of Peroxisome Proliferator-activated Receptor Î <sup>3</sup> and STATs in Adipocytes. Journal of Biological Chemistry, 2001, 276, 7062-7068.                      | 3.4 | 135       |
| 8  | Proteomic Analysis of Primary Cultures of Human Adipose-derived Stem Cells. Molecular and Cellular<br>Proteomics, 2005, 4, 731-740.                                                                             | 3.8 | 130       |
| 9  | Regulation of Adipogenesis by Natural and Synthetic REV-ERB Ligands. Endocrinology, 2010, 151, 3015-3025.                                                                                                       | 2.8 | 115       |
| 10 | STAT5A Promotes Adipogenesis in Nonprecursor Cells and Associates With the Glucocorticoid Receptor During Adipocyte Differentiation. Diabetes, 2003, 52, 308-314.                                               | 0.6 | 112       |
| 11 | Modulation of peroxisome proliferator–activated receptor γ stability and transcriptional activity in adipocytes by resveratrol. Metabolism: Clinical and Experimental, 2008, 57, S32-S38.                       | 3.4 | 79        |
| 12 | Controlling a master switch of adipocyte development and insulin sensitivity: Covalent modifications of PPARÎ <sup>3</sup> . Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 1090-1095. | 3.8 | 76        |
| 13 | Bioactives from bitter melon enhance insulin signaling and modulate acyl carnitine content in<br>skeletal muscle in high-fat diet-fed mice. Journal of Nutritional Biochemistry, 2011, 22, 1064-1073.           | 4.2 | 74        |
| 14 | The Nuclear Ubiquitin-Proteasome System Degrades MyoD. Journal of Biological Chemistry, 2001, 276, 22468-22475.                                                                                                 | 3.4 | 65        |
| 15 | Effect of Various Freezing Parameters on the Immediate Post-Thaw Membrane Integrity of Adipose<br>Tissue Derived Adult Stem Cells. Biotechnology Progress, 2005, 21, 1511-1524.                                 | 2.6 | 65        |
| 16 | Control of Peroxisome Proliferatorâ€Activated Receptor γ2 Stability and Activity by SUMOylation.<br>Obesity, 2004, 12, 921-928.                                                                                 | 4.0 | 63        |
| 17 | Induction of Circadian Gene Expression in Human Subcutaneous Adiposeâ€derived Stem Cells. Obesity, 2007, 15, 2560-2570.                                                                                         | 3.0 | 62        |
| 18 | Estrogens Promote Misfolded Proinsulin Degradation to Protect Insulin Production and Delay Diabetes. Cell Reports, 2018, 24, 181-196.                                                                           | 6.4 | 61        |

| #  | Article                                                                                                                                                                                                                          | IF       | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|
| 19 | Isolation of Human Adipose-Derived Stem Cells from Lipoaspirates. Methods in Molecular Biology, 2011, 702, 17-27.                                                                                                                | 0.9      | 60        |
| 20 | The Ubiquitin Ligase Siah2 Regulates PPARÎ <sup>3</sup> Activity in Adipocytes. Endocrinology, 2012, 153, 1206-1218.                                                                                                             | 2.8      | 59        |
| 21 | STAT 5 activators can replace the requirement of FBS in the adipogenesis of 3T3-L1 cells. Biochemical and Biophysical Research Communications, 2004, 324, 355-359.                                                               | 2.1      | 55        |
| 22 | Adipogenic Differentiation of Adipose-Derived Stem Cells. Methods in Molecular Biology, 2011, 702, 193-200.                                                                                                                      | 0.9      | 53        |
| 23 | Circadian Rhythms and the Regulation of Metabolic Tissue Function and Energy Homeostasis. Obesity, 2007, 15, 539-543.                                                                                                            | 3.0      | 52        |
| 24 | High Efficiency Lipid-Based siRNA Transfection of Adipocytes in Suspension. PLoS ONE, 2009, 4, e6940.                                                                                                                            | 2.5      | 52        |
| 25 | An improved method for isolation of RNA from bone. BMC Biotechnology, 2012, 12, 5.                                                                                                                                               | 3.3      | 48        |
| 26 | PPAR <sup>ĵ3</sup> -Independent Increase in Glucose Uptake and Adiponectin Abundance in Fat Cells. Endocrinology, 2011, 152, 3648-3660.                                                                                          | 2.8      | 47        |
| 27 | Modulation of Skeletal Muscle Insulin Signaling With Chronic Caloric Restriction in Cynomolgus<br>Monkeys. Diabetes, 2009, 58, 1488-1498.                                                                                        | 0.6      | 44        |
| 28 | lsolation of Human Adipose-Derived Stem Cells from Lipoaspirates. Methods in Molecular Biology, 2018, 1773, 155-165.                                                                                                             | 0.9      | 44        |
| 29 | Fat circadian biology. Journal of Applied Physiology, 2009, 107, 1629-1637.                                                                                                                                                      | 2.5      | 42        |
| 30 | Human adenovirus 36 decreases fatty acid oxidation and increases de novo lipogenesis in primary cultured human skeletal muscle cells by promoting Cidec/FSP27 expression. International Journal of Obesity, 2010, 34, 1355-1364. | 3.4      | 42        |
| 31 | PPARâ€Î³ AFâ€2 Domain Functions as a Component of a Ubiquitinâ€dependent Degradation Signal. Obesity, 2009<br>17, 665-673.                                                                                                       | )<br>3.0 | 39        |
| 32 | Prospective influences of circadian clocks in adipose tissue and metabolism. Nature Reviews<br>Endocrinology, 2011, 7, 98-107.                                                                                                   | 9.6      | 38        |
| 33 | Combustion-Derived Hydrocarbons Localize to Lipid Droplets in Respiratory Cells. American Journal of Respiratory Cell and Molecular Biology, 2008, 38, 532-540.                                                                  | 2.9      | 36        |
| 34 | Ubiquitin Ligase NEDD4 Regulates PPARÎ <sup>3</sup> Stability and Adipocyte Differentiation in 3T3-L1 Cells. Scientific Reports, 2016, 6, 38550.                                                                                 | 3.3      | 36        |
| 35 | Poly(ADP-ribose) polymerase (PARP) inhibition counteracts multiple manifestations of kidney disease in long-term streptozotocin-diabetic rat model. Biochemical Pharmacology, 2010, 79, 1007-1014.                               | 4.4      | 35        |
| 36 | Isolation of Murine Adipose-Derived Stem Cells. Methods in Molecular Biology, 2011, 702, 29-36.                                                                                                                                  | 0.9      | 35        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | STAT5A Expression in Swiss 3T3 Cells Promotes Adipogenesis <i>In Vivo</i> in an Athymic Mice Model System. Obesity, 2011, 19, 1731-1734.                                                                             | 3.0 | 33        |
| 38 | Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions. Journal of Cellular Biochemistry, 2007, 101, 1545-1557.                              | 2.6 | 32        |
| 39 | The 4th dimension and adult stem cells: Can timing be everything?. Journal of Cellular Biochemistry, 2009, 107, 569-578.                                                                                             | 2.6 | 28        |
| 40 | Proteome of Human Subcutaneous Adipose Tissue Stromal Vascular Fraction Cells versus Mature<br>Adipocytes Based on DIGE. Journal of Proteome Research, 2011, 10, 1519-1527.                                          | 3.7 | 28        |
| 41 | Isolation of Murine Adipose-Derived Stromal/Stem Cells for Adipogenic Differentiation or Flow Cytometry-Based Analysis. Methods in Molecular Biology, 2018, 1773, 137-146.                                           | 0.9 | 28        |
| 42 | Mitochondrial uncoupling attenuates sarcopenic obesity by enhancing skeletal muscle mitophagy and quality control. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1821-1836.                                  | 7.3 | 25        |
| 43 | The Modulation of STAT5A/GR Complexes during Fat Cell Differentiation and in Mature Adipocytes.<br>Obesity, 2007, 15, 583-590.                                                                                       | 3.0 | 24        |
| 44 | Oral Corticosterone Administration Reduces Insulitis but Promotes Insulin Resistance and<br>Hyperglycemia in Male Nonobese Diabetic Mice. American Journal of Pathology, 2017, 187, 614-626.                         | 3.8 | 23        |
| 45 | Circadian rhythms in adipose tissue. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 554-561.                                                                                                    | 2.5 | 22        |
| 46 | An Extract of Artemisia dracunculus L. Inhibits Ubiquitin-Proteasome Activity and Preserves Skeletal<br>Muscle Mass in a Murine Model of Diabetes. PLoS ONE, 2013, 8, e57112.                                        | 2.5 | 21        |
| 47 | The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation. Obesity, 2015, 23, 2223-2232.                                                                                                      | 3.0 | 20        |
| 48 | The Epigenetics of Adult (Somatic) Stem Cells. Critical Reviews in Eukaryotic Gene Expression, 2008, 18, 189-206.                                                                                                    | 0.9 | 20        |
| 49 | Biological aging alters circadian mechanisms in murine adipose tissue depots. Age, 2013, 35, 533-547.                                                                                                                | 3.0 | 17        |
| 50 | Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein<br>Pathway Suppressor 2 (GPS2) from Proteasomal Degradation. Journal of Biological Chemistry, 2015,<br>290, 19044-19054. | 3.4 | 17        |
| 51 | Comparing the effects of nano-sized sugarcane fiber with cellulose and psyllium on hepatic cellular signaling in mice. International Journal of Nanomedicine, 2012, 7, 2999.                                         | 6.7 | 15        |
| 52 | An Extract of <i>Artemisia dracunculus</i> L. Promotes Psychological Resilience in a Mouse Model of<br>Depression. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-9.                                       | 4.0 | 13        |
| 53 | The DESIGNER Approach Helps Decipher the Hypoglycemic Bioactive Principles of <i>Artemisia<br/>dracunculus</i> (Russian Tarragon). Journal of Natural Products, 2019, 82, 3321-3329.                                 | 3.0 | 12        |
| 54 | Sympathetic Innervation of White Adipose Tissue: to Beige or Not to Beige?. Physiology, 2021, 36, 246-255.                                                                                                           | 3.1 | 12        |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Siah2 Protein Mediates Early Events in Commitment to an Adipogenic Pathway. Journal of Biological<br>Chemistry, 2016, 291, 27289-27297.                                                                                          | 3.4  | 11        |
| 56 | Siah2 modulates sex-dependent metabolic and inflammatory responses in adipose tissue to a high-fat diet challenge. Biology of Sex Differences, 2019, 10, 19.                                                                     | 4.1  | 11        |
| 57 | An ethanolic extract of Artemisia dracunculus L. regulates gene expression of ubiquitin–proteasome<br>system enzymes in skeletal muscle: Potential role in the treatment of sarcopenic obesity. Nutrition,<br>2014, 30, S21-S25. | 2.4  | 10        |
| 58 | An Extract of Russian Tarragon Prevents Obesityâ€Related Ectopic Lipid Accumulation. Molecular<br>Nutrition and Food Research, 2018, 62, e1700856.                                                                               | 3.3  | 9         |
| 59 | Degradation of STAT5 proteins in 3T3-L1 adipocytes is induced by TNF-α and cycloheximide in a manner independent of STAT5A activation. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E461-E468.      | 3.5  | 7         |
| 60 | SIAH2 is Expressed in Adipocyte Precursor Cells and Interacts with EBF1 and ZFP521 to Promote Adipogenesis. Obesity, 2021, 29, 98-107.                                                                                           | 3.0  | 7         |
| 61 | Prospecting for Adipose Progenitor Cell Biomarkers: Biopanning for Gold with InÂVivo Phage Display.<br>Cell Stem Cell, 2011, 9, 1-2.                                                                                             | 11.1 | 6         |
| 62 | Screening native botanicals for bioactivity: An interdisciplinary approach. Nutrition, 2014, 30, S11-S16.                                                                                                                        | 2.4  | 6         |
| 63 | Prolonged Proteasome Inhibition Cyclically Upregulates Oct3/4 and Nanog Gene Expression, but<br>Reduces Induced Pluripotent Stem Cell Colony Formation. Cellular Reprogramming, 2015, 17, 95-105.                                | 0.9  | 6         |
| 64 | Potential adverse effects of botanical supplementation in high-fat-fed female mice. Biology of Sex<br>Differences, 2018, 9, 41.                                                                                                  | 4.1  | 5         |
| 65 | NT-PGC-1α deficiency attenuates high-fat diet-induced obesity by modulating food intake, fecal fat excretion and intestinal fat absorption. Scientific Reports, 2021, 11, 1323.                                                  | 3.3  | 5         |
| 66 | Fine-Tuning Reception in the Bone: PPARÎ <sup>3</sup> and Company. PPAR Research, 2006, 2006, 1-7.                                                                                                                               | 2.4  | 4         |
| 67 | Metabolism: What Causes the Gut's Circadian Instincts?. Current Biology, 2011, 21, R624-R626.                                                                                                                                    | 3.9  | 4         |
| 68 | Gene expression profile in human skeletal muscle cells infected with human adenovirus type 36.<br>Journal of Medical Virology, 2012, 84, 1254-1266.                                                                              | 5.0  | 4         |
| 69 | Designing a Clinical Study With Dietary Supplements: It's All in the Details. Frontiers in Nutrition, 2021, 8, 779486.                                                                                                           | 3.7  | 4         |
| 70 | Artemisia dracunculus L. Ethanolic Extract and an Isolated Component, DMC2, Ameliorate<br>Inflammatory Signaling in Pancreatic β-Cells via Inhibition of p38 MAPK. Biomolecules, 2022, 12, 708.                                  | 4.0  | 3         |
| 71 | Mechanisms of metabolism, aging and obesity. Biochimie, 2016, 124, 1-2.                                                                                                                                                          | 2.6  | 2         |
| 72 | Adaptive Fat Oxidation Is Coupled with Increased Lipid Storage in Adipose Tissue of Female Mice Fed<br>High Dietary Fat and Sucrose. Nutrients, 2020, 12, 2233.                                                                  | 4.1  | 2         |

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | An Ethanolic Extract of Artemisia dracunculus L. Enhances the Metabolic Benefits of Exercise in Diet-induced Obese Mice. Medicine and Science in Sports and Exercise, 2021, 53, 712-723. | 0.4 | 2         |
| 74 | The Ubiquitin Ligase SIAH2 Negatively Regulates Glucocorticoid Receptor Activity and Abundance.<br>Biomedicines, 2021, 9, 22.                                                            | 3.2 | 2         |
| 75 | Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer, 2022, 22, 300.                                    | 2.6 | 2         |
| 76 | PPARs, RXRs, and Stem Cells. PPAR Research, 2007, 2007, 1-1.                                                                                                                             | 2.4 | 1         |
| 77 | Botanicals and translational medicine: A paradigm shift in research approach. Nutrition, 2014, 30, S1-S3.                                                                                | 2.4 | 1         |
| 78 | Characterization of PMI-5011 on the regulation of deubiquitinating enzyme activity in multiple myeloma cell extracts. Biochemical Engineering Journal, 2021, 166, 107834.                | 3.6 | 1         |
| 79 | Aging and Bone. , 2016, , 23-42.                                                                                                                                                         |     | 1         |
| 80 | Aging and Bone. , 2009, , 19-33.                                                                                                                                                         |     | 0         |
| 81 | Siah2 Expression in Adipocyte Progenitor Cells. Diabetes, 2018, 67, 1757-P.                                                                                                              | 0.6 | 0         |
| 82 | Siah2 in Adipocytes Promotes M2-Like Macrophage Activation in Adipose Tissue. Diabetes, 2018, 67, .                                                                                      | 0.6 | 0         |