
Nadezhda M Vitkovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3832684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Theoretical study of the low-lying excited singlet states of furan. Journal of Chemical Physics, 2003, 119, 737-753.	1.2	57
2	Core-level electronic spectra in ADC(2) approximation for polarization propagator: Carbon monoxide and nitrogen molecules. Journal of Structural Chemistry, 2000, 41, 483-494.	0.3	49
3	Theoretical study of excitations in furan: Spectra and molecular dynamics. Journal of Chemical Physics, 2004, 121, 4585-4598.	1.2	49
4	Nucleophilic Addition of Ketones To Acetylenes and Allenes: AÂQuantum-Chemical Insight. Journal of Organic Chemistry, 2017, 82, 12467-12476.	1.7	37
5	Quantumâ€chemical models of KOH(KOBu ^t)/DMSO superbasic systems and mechanisms of baseâ€promoted acetylene reactions. International Journal of Quantum Chemistry, 2020, 120, e26158.	1.0	27
6	3H-Pyrroles from ketoximes and acetylene: synthesis, stability and quantum-chemical insight. Tetrahedron, 2015, 71, 3273-3281.	1.0	25
7	Title is missing!. Russian Chemical Bulletin, 2002, 51, 774-782.	0.4	23
8	Exploring acetylene chemistry in superbasic media: A theoretical study of the effect of water on vinylation and ethynylation reactions with acetylene in KOH/DMSO and NaOH/DMSO systems. Journal of Physical Organic Chemistry, 2017, 30, e3669.	0.9	22
9	Theoretical investigation of photoelectron spectra of furan, pyrrole, thiophene, and selenole. Chemistry of Heterocyclic Compounds, 2008, 44, 1101-1112.	0.6	20
10	Methanol vinylation mechanism in the KOH/DMSO/CH ₃ OH/C ₂ H ₂ system. International Journal of Quantum Chemistry, 2011, 111, 2519-2524.	1.0	20
11	A theoretical study of methanol vinylation reaction mechanism. International Journal of Quantum Chemistry, 2008, 108, 2630-2635.	1.0	13
12	Alkyland arylketone reactions with phenylacetylene promoted by KOH—DMSO superbase: a quantum chemical study. Russian Chemical Bulletin, 2015, 64, 518-524.	0.4	11
13	Aluminium oxide-mediated cross-coupling of pyrroles with 1-bromo-2-(trifluoroacetyl)acetylene: a quantum-chemical insight. Mendeleev Communications, 2016, 26, 480-482.	0.6	11
14	A theoretical study of acetone reactions with acetylene and phenylacetylene in the KOH/DMSO superbasic system. Doklady Chemistry, 2014, 457, 126-128.	0.2	9
15	Self-Assembly of <i>N</i> -Phenyl-2,5-dimethylpyrrole from Acetylene and Aniline in KOH/DMSO and KOBu <i>^t</i> /DMSO Superbase Systems: A Quantum-Chemical Insight. Journal of Organic Chemistry, 2020, 85, 10617-10627.	1.7	9
16	Cascade Assembly of 4,5,6,7-Tetrahydroindole from Cyclohexanone Oxime and Acetylene in the KOH/DMSO Superbase Medium: AÂQuantum Chemical Study. Journal of Organic Chemistry, 2020, 85, 6463-6470.	1.7	9
17	Nucleophilic addition of methanol and methanethiol to acetylene in the superbasic system KOH-DMSO: a quantum chemical model. Russian Chemical Bulletin, 2013, 62, 26-32.	0.4	8
18	Two classes of heterocycles—6,8â€dioxabicyclo[3.2.1]octanes and cyclopentenols from the same reagents: A quantumâ€chemical comparison of mechanism. International Journal of Quantum Chemistry, 2018, 118, e25689.	1.0	8

#	Article	IF	CITATIONS
19	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 1999, 48, 35-41.	0.4	7
20	Synthesis of divinyl sulfide via addition of the hydrogen sulfide anion to acetylene in an alkaline metal hydroxide/DMSO superbasic system: A quantum-chemical insight. Tetrahedron Letters, 2017, 58, 92-96.	0.7	7
21	Transition-Metal-Free C-Vinylation of Ketones with Acetylenes: A Quantum-Chemical Rationalization of Similarities and Differences in Catalysis by Superbases MOH/DMSO and <i>t</i> BuOM/DMSO (M = Na, K). Journal of Organic Chemistry, 2018, 83, 3719-3726.	1.7	7
22	Quantum-chemical investigation of the silicon and carbon coordination bond in their isostructural compounds. International Journal of Quantum Chemistry, 1980, 17, 299-305.	1.0	6
23	Theoretical analysis of pyrrole anions addition to carbon disulfide and carbon dioxide. International Journal of Quantum Chemistry, 2002, 88, 542-548.	1.0	6
24	Theoretical study of the [1,3]-prototropic rearrangements of oximes and their ethers. Journal of Structural Chemistry, 2008, 49, 216-223.	0.3	6
25	A Theoretical study of vinylation of methanol, acetoxime, and methanethiol with acetylene in the KOH-DMSO system. Doklady Chemistry, 2011, 438, 167-169.	0.2	6
26	Aldol Condensation <i>Versus</i> Superbase-Catalyzed Addition of Ketones to Acetylenes: A Quantum-Chemical and Experimental Study. Journal of Organic Chemistry, 2021, 86, 7439-7449.	1.7	6
27	Theoretical Analysis and Experimental Study of the Spatial Structure and Isomerism of Acetone Azine and Its Cyclization to 3,5,5-Trimethyl-4,5-dihydro-1H-pyrazole. Journal of Structural Chemistry, 2004, 45, 748-755.	0.3	5
28	AB initio quantum chemical study of the reaction mechanism of ethynide ion formation in the C2H2/MOH/DMSO system (M = Li, Na, K). Journal of Structural Chemistry, 2009, 50, 27-33.	0.3	5
29	Interaction of methanol, methanthiol, and acetoxime with potassium and rubidium hydroxides in dimethyl sulfoxide. Journal of Structural Chemistry, 2011, 52, 659-663.	0.3	5
30	Hydrative trimerization of acetylene into 2-vinyloxy-1,3-butadiene in the KOH/DMSO system: a quantum chemical insight. Tetrahedron Letters, 2015, 56, 1063-1066.	0.7	5
31	Quantum chemical comparison of ethynylation and C-vinylation routes in superbase catalyzed reaction of acetylenes with imines. Mendeleev Communications, 2019, 29, 622-624.	0.6	5
32	Ambient access to a new family of pyrrole-fused pyrazine nitrones <i>via</i> 2-carbonyl- <i>N</i> -allenylpyrroles. Organic Chemistry Frontiers, 2020, 7, 4019-4025.	2.3	5
33	Ab initio quantum-chemical study of the reaction mechanisms of acetylene in superbasic media. Noncatalytic vinylation of methanol. Journal of Structural Chemistry, 2007, 48, S94-S99.	0.3	4
34	Methanol interaction with potassium and rubidium hydroxides in dimethyl sulfoxide. Journal of Structural Chemistry, 2011, 52, 652-658.	0.3	4
35	Quantum-chemical study of regioselectivity and stereoselectivity of methanol vinylation with substituted acetylenes in a KOH/DMSO superbasic medium. Doklady Chemistry, 2013, 452, 227-229.	0.2	4
36	Quantum-chemical study of the stereoselectivity of methanethiol nucleophilic addition to substituted acetylenes in KOH/DMSO superbasic medium. Doklady Chemistry, 2014, 456, 91-93.	0.2	4

#	Article	IF	CITATIONS
37	Baseâ€Promoted Formation of an Annelated Pyrroloâ€1,4â€oxazine Ensemble from 1 <i>H</i> â€pyrrolâ€2â€ylmethanol and Propargyl Chloride: A Theoretical and Experimental Study. ChemPlusChem, 2020, 85, 88-100.	1.3	4
38	Pyrrole anion addition to carbon disulfide: An ab initio study. International Journal of Quantum Chemistry, 2004, 100, 360-366.	1.0	3
39	An ab initio quantum chemical study of reaction mechanisms in the C2H2/CH3OH/KOH/DMSO system. Journal of Structural Chemistry, 2010, 51, 428-436.	0.3	3
40	Headâ€ŧoâ€Tail Dimerization of 4â€Fluoroacetophenone in the KOH/DMSO Superbase Suspension and Related S _N Ar Reaction. European Journal of Organic Chemistry, 2020, 2020, 3480-3485.	1.2	3
41	Nonempirical calculation of various derivatives of methane, silane, and the monofluorides of the elements of the third period. Journal of Structural Chemistry, 1977, 17, 678-681.	0.3	2
42	Ab initio investigation of the electron structure in bis-Cu+ acetylene and vinylidene complexes. Reaction Kinetics and Catalysis Letters, 1986, 31, 167-172.	0.6	2
43	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 1999, 48, 653-658.	0.4	2
44	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 2000, 49, 415-420.	0.4	2
45	Sulfur Versus Oxygen in Interaction with the Double Bond: AB Initio Study of Electronic Structure and Prototropic Rearrangement of 1-Methoxy-2-propene and 1-Methylthio-2-propene. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2931-2940.	0.8	2
46	Ab initio quantum-chemical study of vinylation of pyrrole and 2-phenylazopyrrole with acetylene in a KOH/DMSO system. Journal of Structural Chemistry, 2007, 48, S100-S110.	0.3	2
47	Theoretical evaluation of some interactions in the system of acetylene-alkali metal hydroxide-DMSO. Journal of Structural Chemistry, 2009, 50, 18-26.	0.3	2
48	Quantum chemical modeling of superbase-catalyzed reactions of acetophenone and methyl mesityl ketone with acetylene. Russian Chemical Bulletin, 2017, 66, 2227-2233.	0.4	2
49	Competitive Deprotonation in Vicinal O=SCH2CH2P=O Moieties. Letters in Organic Chemistry, 2006, 3, 720-722.	0.2	2
50	Structures of 2-hydroxypyridine and its vinyl derivatives. Chemistry of Heterocyclic Compounds, 1972, 8, 89-94.	0.6	1
51	Nonempirical quantum-chemical studies on Cu+ carbonyl and isocarbonyl complexes. Reaction Kinetics and Catalysis Letters, 1986, 30, 361-367.	0.6	1
52	Quantum chemical study of the interaction of acetylene with lithium hydroxide and hydrosulfide. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 94-97.	0.0	1
53	Quantum-chemical investigation of the mechanisms of reactions involving nucleophilic addition to acetylene 1. Addition of a hydroxide ion. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1988, 37, 1173-1176.	0.0	1
54	Quantum-chemical investigation of the mechanisms of nucleophilic addition reactions to acetylene. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1645-1648.	0.0	1

Nadezhda M Vitkovskaya

#	Article	IF	CITATIONS
55	Question of the reverse polarization of triple bonds. Journal of Structural Chemistry, 1991, 32, 59-64.	0.3	1
56	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 1997, 46, 1677-1682.	0.4	1
57	Multiple bond migration with participation of a protophilic agent. Russian Chemical Bulletin, 2000, 49, 408-414.	0.4	1
58	Ab initio Study of the Reaction of Pyrrole Anions with Carbon Disulfide. Journal of Structural Chemistry, 2001, 42, 536-543.	0.3	1
59	Ab Initio Study of the Acetylene–Allene Rearrangement in 2-Propargylpyrrole, 2-Propargylfuran, and 2-Propargylthiophene. Journal of Structural Chemistry, 2004, 45, 5-11.	0.3	1
60	Theoretical study of the double bond migration mechanism with participation of hydroxide ion. International Journal of Quantum Chemistry, 2004, 100, 367-374.	1.0	1
61	A theoretical study of ethynylation of formaldehyde with acetylene in the KOH-DMSO system. Doklady Chemistry, 2011, 439, 181-182.	0.2	1
62	Quantum chemical study of the formation of acetylenic alcohols and 7-methylidene-6,8-dioxabicyclo[3.2.1]octanes from acetylene and carbonyl compounds. Russian Chemical Bulletin, 2013, 62, 2306-2310.	0.4	1
63	Quantum chemical study of the stereoselectivity of nucleophilic addition of 2-methylcyclohexanone to phenylacetylene. Doklady Chemistry, 2015, 461, 100-103.	0.2	1
64	Formation mechanism and conformational structure of 2,3,4-trimethyl-1,5-di(thiophen-2-yl)pentane-1,5-dione: quantum chemical study. Russian Chemical Bulletin, 2016, 65, 394-400.	0.4	1
65	Baseâ€Promoted Formation of an Annelated Pyrroloâ€1,4â€oxazine Ensemble from 1 H â€pyrrolâ€2â€ylmethano Propargyl Chloride: A Theoretical and Experimental Study. ChemPlusChem, 2020, 85, 4-4.	l and 1.3	1
66	A program for nonempirical molecular SCF lcao mo calculations. Journal of Structural Chemistry, 1972, 13, 332-333.	0.3	0
67	AB initio calculation of acetylide anion. Journal of Structural Chemistry, 1975, 16, 309-310.	0.3	0
68	Analysis of electronic absorption spectra and structure of group IV-B heteroorganic compounds by means of semiempirical SCF MO LCAO method. Journal of Structural Chemistry, 1975, 15, 539-543.	0.3	0
69	Ab initio calculation of acetylene and its monoderivatives. Journal of Structural Chemistry, 1975, 15, 584-587.	0.3	0
70	Nonempirical calculation of surface area of potential energy of ammonium ion. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1976, 25, 2210-2212.	0.0	0
71	Electronic structure of anionic nitro compounds. Journal of Structural Chemistry, 1977, 17, 519-526.	0.3	0
72	Nonempirical calculation of the potential surface for the formation of the hydrazinium ion. Journal of Structural Chemistry, 1979, 19, 615-617.	0.3	0

0.0 0.0 0.0	0 0 0
0.0	0
0.3	0
0.0	о
0.3	0
0.3	О
0.0	0
0.3	о
0.0	0
0.0	О
0.0	0
0.0	О
0.0	0
0.6	о
0.3	0
0.4	0
	 0.0 0.3 0.3 0.0 0.0