Frank J M Van Kuppeveld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/383138/publications.pdf Version: 2024-02-01

		17440	30087
213	13,783	63	103
papers	citations	h-index	g-index
232	232	232	16812
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Fluoxetine targets an allosteric site in the enterovirus 2C AAA+ ATPase and stabilizes a ring-shaped hexameric complex. Science Advances, 2022, 8, eabj7615.	10.3	11
2	Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication. Molecules, 2022, 27, 1052.	3.8	4
3	An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Science Immunology, 2022, 7, eabp9312.	11.9	35
4	Rhinoviruses usurp STING for replication. Nature Microbiology, 2022, 7, 605-606.	13.3	1
5	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	12.8	12
6	The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy. Nature Communications, 2022, 13, .	12.8	11
7	Proteolytic Activities of Enterovirus 2A Do Not Depend on Its Interaction with SETD3. Viruses, 2022, 14, 1360.	3.3	0
8	Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions. Nature Communications, 2022, 13, .	12.8	27
9	Second sialic acidâ€binding site of influenza A virus neuraminidase: binding receptors for efficient release. FEBS Journal, 2021, 288, 5598-5612.	4.7	25
10	A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nature Communications, 2021, 12, 1715.	12.8	138
11	Respiratory mucus as a virus-host range determinant. Trends in Microbiology, 2021, 29, 983-992.	7.7	25
12	Analysis of the Evolution of Pandemic Influenza A(H1N1) Virus Neuraminidase Reveals Entanglement of Different Phenotypic Characteristics. MBio, 2021, 12, .	4.1	11
13	Serologic Screening of Severe Acute Respiratory Syndrome Coronavirus 2 Infection in Cats and Dogs during First Coronavirus Disease Wave, the Netherlands. Emerging Infectious Diseases, 2021, 27, 1362-1370.	4.3	51
14	Enterocytes, fibroblasts and myeloid cells synergize in anti-bacterial and anti-viral pathways with IL22 as the central cytokine. Communications Biology, 2021, 4, 631.	4.4	8
15	Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Science Advances, 2021, 7, .	10.3	42
16	SARS-CoV-2 Neutralizing Human Antibodies Protect Against Lower Respiratory Tract Disease in a Hamster Model. Journal of Infectious Diseases, 2021, 223, 2020-2028.	4.0	28
17	A plug-and-play platform of ratiometric bioluminescent sensors for homogeneous immunoassays. Nature Communications, 2021, 12, 4586.	12.8	50
18	Bithiazole Inhibitors of Phosphatidylinositol 4â€Kinase (PI4KIIIβ) as Broadâ€Spectrum Antivirals Blocking the Replication of SARSâ€CoVâ€2, Zika Virus, and Human Rhinoviruses. ChemMedChem, 2021, 16, 3548-3552.	3.2	13

#	Article	IF	CITATIONS
19	SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms. Nature Communications, 2021, 12, 5621.	12.8	63
20	An alphavirus replicon-based vaccine expressing a stabilized Spike antigen induces protective immunity and prevents transmission of SARS-CoV-2 between cats. Npj Vaccines, 2021, 6, 122.	6.0	17
21	Characterization of the c10orf76â€PI4KB complex and its necessity for Golgi PI4P levels and enterovirus replication. EMBO Reports, 2020, 21, e48441.	4.5	21
22	Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25759-25770.	7.1	48
23	Immunometabolism pathways as the basis for innovative anti-viral strategies (INITIATE): A Marie Sklodowska-Curie innovative training network. Virus Research, 2020, 287, 198094.	2.2	2
24	Inhibition of the integrated stress response by viral proteins that block p-elF2–elF2B association. Nature Microbiology, 2020, 5, 1361-1373.	13.3	39
25	Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its deISGylase/DUB activity, in type I interferon suppression. PLoS Pathogens, 2020, 16, e1008702.	4.7	26
26	Development of a SARS-CoV-2 Total Antibody Assay and the Dynamics of Antibody Response over Time in Hospitalized and Nonhospitalized Patients with COVID-19. Journal of Immunology, 2020, 205, 3491-3499.	0.8	61
27	Serological Screening of Influenza A Virus Antibodies in Cats and Dogs Indicates Frequent Infection with Different Subtypes. Journal of Clinical Microbiology, 2020, 58, .	3.9	10
28	Mutation of the second sialic acid-binding site of influenza A virus neuraminidase drives compensatory mutations in hemagglutinin. PLoS Pathogens, 2020, 16, e1008816.	4.7	19
29	Dynamic remodelling of the human host cell proteome and phosphoproteome upon enterovirus infection. Nature Communications, 2020, 11, 4332.	12.8	27
30	Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nature Communications, 2020, 11, 4646.	12.8	24
31	Enhanced Enterovirus D68 Replication in Neuroblastoma Cells Is Associated with a Cell Culture-Adaptive Amino Acid Substitution in VP1. MSphere, 2020, 5, .	2.9	7
32	A human monoclonal antibody blocking SARS-CoV-2 infection. Nature Communications, 2020, 11, 2251.	12.8	919
33	Host factor prioritization for pan-viral genetic perturbation screens using random intercept models and network propagation. PLoS Computational Biology, 2020, 16, e1007587.	3.2	11
34	Synthesis and antiviral effect of novel fluoxetine analogues as enterovirus 2C inhibitors. Antiviral Research, 2020, 178, 104781.	4.1	21
35	Rational design of highly potent broad-spectrum enterovirus inhibitors targeting the nonstructural protein 2C. PLoS Biology, 2020, 18, e3000904.	5.6	17

36 Title is missing!. , 2020, 18, e3000904.

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 18, e3000904.		Ο
38	Title is missing!. , 2020, 18, e3000904.		0
39	Title is missing!. , 2020, 18, e3000904.		Ο
40	Title is missing!. , 2020, 18, e3000904.		0
41	Title is missing!. , 2020, 18, e3000904.		Ο
42	Title is missing!. , 2020, 16, e1007587.		0
43	Title is missing!. , 2020, 16, e1007587.		0
44	Title is missing!. , 2020, 16, e1007587.		0
45	Title is missing!. , 2020, 16, e1007587.		0
46	Identification of fukinolic acid from Cimicifuga heracleifolia and its derivatives as novel antiviral compounds against enterovirus A71 infection. International Journal of Antimicrobial Agents, 2019, 53, 128-136.	2.5	21
47	Lipid Droplets Grease Enterovirus Replication. Cell Host and Microbe, 2019, 26, 149-151.	11.0	15
48	Convergent evolution in the mechanisms of ACBD3 recruitment to picornavirus replication sites. PLoS Pathogens, 2019, 15, e1007962.	4.7	26
49	Identification of the Cell-Surface Protease ADAM9 as an Entry Factor for Encephalomyocarditis Virus. MBio, 2019, 10, .	4.1	15
50	Serological Screening for Coronavirus Infections in Cats. Viruses, 2019, 11, 743.	3.3	25
51	Bypassing pan-enterovirus host factor PLA2G16. Nature Communications, 2019, 10, 3171.	12.8	31
52	Fluoxetine Inhibits Enterovirus Replication by Targeting the Viral 2C Protein in a Stereospecific Manner. ACS Infectious Diseases, 2019, 5, 1609-1623.	3.8	50
53	Intra-host emergence of an enterovirus A71 variant with enhanced PSGL1 usage and neurovirulence. Emerging Microbes and Infections, 2019, 8, 1076-1085.	6.5	10
54	No evidence for viral small RNA production and antiviral function of Argonaute 2 in human cells. Scientific Reports, 2019, 9, 13752.	3.3	17

#	Article	IF	CITATIONS
55	Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2097-2102.	7.1	163
56	Human coronaviruses OC43 and HKU1 bind to 9- <i>O</i> -acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2681-2690.	7.1	335
57	The 2nd sialic acid-binding site of influenza A virus neuraminidase is an important determinant of the hemagglutinin-neuraminidase-receptor balance. PLoS Pathogens, 2019, 15, e1007860.	4.7	45
58	Origins of Enterovirus Replication Organelles Established by Whole-Cell Electron Microscopy. MBio, 2019, 10, .	4.1	51
59	Essential Role of Enterovirus 2A Protease in Counteracting Stress Granule Formation and the Induction of Type I Interferon. Journal of Virology, 2019, 93, .	3.4	47
60	Towards a solution to MERS: protective human monoclonal antibodies targeting different domains and functions of the MERS-coronavirus spike glycoprotein. Emerging Microbes and Infections, 2019, 8, 516-530.	6.5	99
61	ACBD3 Is an Essential Pan-enterovirus Host Factor That Mediates the Interaction between Viral 3A Protein and Cellular Protein PI4KB. MBio, 2019, 10, .	4.1	46
62	Picornavirus infection induces temporal release of multiple extracellular vesicle subsets that differ in molecular composition and infectious potential. PLoS Pathogens, 2019, 15, e1007594.	4.7	46
63	Development and Validation of a S1 Protein-Based ELISA for the Specific Detection of Antibodies against Equine Coronavirus. Viruses, 2019, 11, 1109.	3.3	10
64	Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation. Journal of Virology, 2019, 93, .	3.4	72
65	Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2371-2376.	7.1	68
66	The life cycle of non-polio enteroviruses and how to target it. Nature Reviews Microbiology, 2018, 16, 368-381.	28.6	275
67	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 397-402.	7.1	43
68	Molecular basis for the acid-initiated uncoating of human enterovirus D68. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E12209-E12217.	7.1	38
69	Structure-activity relationship study of itraconazole, a broad-range inhibitor of picornavirus replication that targets oxysterol-binding protein (OSBP). Antiviral Research, 2018, 156, 55-63.	4.1	22
70	Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5135-E5143.	7.1	192
71	Interferon-beta expression and type I interferon receptor signaling of hepatocytes prevent hepatic necrosis and virus dissemination in Coxsackievirus B3-infected mice. PLoS Pathogens, 2018, 14, e1007235.	4.7	22
72	Posaconazole inhibits dengue virus replication by targeting oxysterol-binding protein. Antiviral Research, 2018, 157, 68-79.	4.1	32

#	Article	IF	CITATIONS
73	Substrate Binding by the Second Sialic Acid-Binding Site of Influenza A Virus N1 Neuraminidase Contributes to Enzymatic Activity. Journal of Virology, 2018, 92, .	3.4	30
74	Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathogens, 2018, 14, e1007233.	4.7	101
75	PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature, 2017, 541, 412-416.	27.8	168
76	Uncovering oxysterol-binding protein (OSBP) as a target of the anti-enteroviral compound TTP-8307. Antiviral Research, 2017, 140, 37-44.	4.1	43
77	Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. Journal of Virology, 2017, 91, .	3.4	44
78	Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Cell Host and Microbe, 2017, 21, 356-366.	11.0	83
79	Viral rewiring of cellular lipid metabolism to create membranous replication compartments. Current Opinion in Cell Biology, 2017, 47, 24-33.	5.4	91
80	Direct-acting antivirals and host-targeting strategies to combat enterovirus infections. Current Opinion in Virology, 2017, 24, 1-8.	5.4	73
81	Aminopeptidase N is not required for porcine epidemic diarrhea virus cell entry. Virus Research, 2017, 235, 6-13.	2.2	74
82	Modulation of proteolytic polyprotein processing by coxsackievirus mutants resistant to inhibitors targeting phosphatidylinositol-4-kinase IIIβ or oxysterol binding protein. Antiviral Research, 2017, 147, 86-90.	4.1	12
83	Escaping Host Factor PI4KB Inhibition: Enterovirus Genomic RNA Replication in the Absence of Replication Organelles. Cell Reports, 2017, 21, 587-599.	6.4	41
84	Deletion of Cytoplasmic Double-Stranded RNA Sensors Does Not Uncover Viral Small Interfering RNA Production in Human Cells. MSphere, 2017, 2, .	2.9	19
85	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	7.1	272
86	Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity. Emerging Infectious Diseases, 2017, 23, 220-231.	4.3	59
87	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	4.7	184
88	Building Viral Replication Organelles: Close Encounters of the Membrane Types. PLoS Pathogens, 2016, 12, e1005912.	4.7	104
89	Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. PLoS Pathogens, 2016, 12, e1005982.	4.7	161
90	Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIα and Oxysterol-Binding Protein. MSphere, 2016, 1, .	2.9	18

#	Article	IF	CITATIONS
91	An IFIH1 gene polymorphism associated with risk for autoimmunity regulates canonical antiviral defence pathways in Coxsackievirus infected human pancreatic islets. Scientific Reports, 2016, 6, 39378.	3.3	52
92	Coronavirus receptor switch explained from the stereochemistry of protein–carbohydrate interactions and a single mutation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3111-9.	7.1	38
93	Immunologic defects in severe mucocutaneous HSV-2 infections: Response to IFN-Î ³ therapy. Journal of Allergy and Clinical Immunology, 2016, 138, 895-898.	2.9	6
94	Characterization of Epitope-Specific Anti-Respiratory Syncytial Virus (Anti-RSV) Antibody Responses after Natural Infection and after Vaccination with Formalin-Inactivated RSV. Journal of Virology, 2016, 90, 5965-5977.	3.4	46
95	Feline Calicivirus Infection Disrupts Assembly of Cytoplasmic Stress Granules and Induces G3BP1 Cleavage. Journal of Virology, 2016, 90, 6489-6501.	3.4	54
96	Tyrphostin AG1478 Inhibits Encephalomyocarditis Virus and Hepatitis C Virus by Targeting Phosphatidylinositol 4-Kinase IIIα. Antimicrobial Agents and Chemotherapy, 2016, 60, 6402-6406.	3.2	15
97	An siRNA screen for ATG protein depletion reveals the extent of the unconventional functions of the autophagy proteome in virus replication. Journal of Cell Biology, 2016, 214, 619-635.	5.2	52
98	Structure and Genome Release Mechanism of the Human Cardiovirus Saffold Virus 3. Journal of Virology, 2016, 90, 7628-7639.	3.4	17
99	Identification of Residues That Affect Oligomerization and/or Enzymatic Activity of Influenza Virus H5N1 Neuraminidase Proteins. Journal of Virology, 2016, 90, 9457-9470.	3.4	31
100	Cellular entry of the porcine epidemic diarrhea virus. Virus Research, 2016, 226, 117-127.	2.2	128
101	Infectious Bronchitis Coronavirus Limits Interferon Production by Inducing a Host Shutoff That Requires Accessory Protein 5b. Journal of Virology, 2016, 90, 7519-7528.	3.4	76
102	Sensing of latent EBV infection through exosomal transfer of 5′pppRNA. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E587-96.	7.1	136
103	Fat(al) attraction: Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles. Trends in Microbiology, 2016, 24, 535-546.	7.7	92
104	Screening of a Library of FDA-Approved Drugs Identifies Several Enterovirus Replication Inhibitors That Target Viral Protein 2C. Antimicrobial Agents and Chemotherapy, 2016, 60, 2627-2638.	3.2	62
105	Enterovirus D68 receptor requirements unveiled by haploid genetics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1399-1404.	7.1	86
106	Neurotropism of Saffold virus in a mouse model. Journal of General Virology, 2016, 97, 1350-1355.	2.9	4
107	Rapid Emergence of Highly Pathogenic Avian Influenza Subtypes from a Subtype H5N1 Hemagglutinin Variant. Emerging Infectious Diseases, 2015, 21, 842-846.	4.3	75
108	Replication and Inhibitors of Enteroviruses and Parechoviruses. Viruses, 2015, 7, 4529-4562.	3.3	117

#	Article	IF	CITATIONS
109	Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS Pathogens, 2015, 11, e1005185.	4.7	93
110	A Single Point Mutation Creating a Furin Cleavage Site in the Spike Protein Renders Porcine Epidemic Diarrhea Coronavirus Trypsin Independent for Cell Entry and Fusion. Journal of Virology, 2015, 89, 8077-8081.	3.4	33
111	Broad-range inhibition of enterovirus replication by OSW-1, a natural compound targeting OSBP. Antiviral Research, 2015, 117, 110-114.	4.1	59
112	Sialic acid-dependent cell entry of human enterovirus D68. Nature Communications, 2015, 6, 8865.	12.8	101
113	In silico structure-based design and synthesis of novel anti-RSV compounds. Antiviral Research, 2015, 122, 46-50.	4.1	16
114	ATP1A1-Mediated Src Signaling Inhibits Coronavirus Entry into Host Cells. Journal of Virology, 2015, 89, 4434-4448.	3.4	101
115	Cholesterol shuttling is important for <scp>RNA</scp> replication of coxsackievirus <scp>B</scp> 3 and encephalomyocarditis virus. Cellular Microbiology, 2015, 17, 1144-1156.	2.1	39
116	Itraconazole Inhibits Enterovirus Replication by Targeting the Oxysterol-Binding Protein. Cell Reports, 2015, 10, 600-615.	6.4	201
117	GBF1- and ACBD3-Independent Recruitment of PI4KIIIβ to Replication Sites by Rhinovirus 3A Proteins. Journal of Virology, 2015, 89, 1913-1918.	3.4	38
118	Stress Granules Regulate Double-Stranded RNA-Dependent Protein Kinase Activation through a Complex Containing G3BP1 and Caprin1. MBio, 2015, 6, e02486.	4.1	118
119	The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family. PLoS Pathogens, 2015, 11, e1004733.	4.7	55
120	Targeting of the Hydrophobic Metabolome by Pathogens. Traffic, 2015, 16, 439-460.	2.7	12
121	Antiviral Activity of Broad-Spectrum and Enterovirus-Specific Inhibitors against Clinical Isolates of Enterovirus D68. Antimicrobial Agents and Chemotherapy, 2015, 59, 7782-7785.	3.2	54
122	Synergistic antiviral activity of gemcitabine and ribavirin against enteroviruses. Antiviral Research, 2015, 124, 1-10.	4.1	59
123	Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. Cell Reports, 2015, 11, 1966-1978.	6.4	62
124	Knockout of cGAS and STING Rescues Virus Infection of Plasmid DNA-Transfected Cells. Journal of Virology, 2015, 89, 11169-11173.	3.4	43
125	Integrative Genomics-Based Discovery of Novel Regulators of the Innate Antiviral Response. PLoS Computational Biology, 2015, 11, e1004553.	3.2	25
126	Enterovirus-Infected β-Cells Induce Distinct Response Patterns in BDCA1+ and BDCA3+ Human Dendritic Cells. PLoS ONE, 2015, 10, e0121670.	2.5	8

#	Article	IF	CITATIONS
127	Recombinant Soluble Respiratory Syncytial Virus F Protein That Lacks Heptad Repeat B, Contains a GCN4 Trimerization Motif and Is Not Cleaved Displays Prefusion-Like Characteristics. PLoS ONE, 2015, 10, e0130829.	2.5	15
128	Modification of picornavirus genomic RNA using â€~click' chemistry shows that unlinking of the VPg peptide is dispensable for translation and replication of the incoming viral RNA. Nucleic Acids Research, 2014, 42, 2473-2482.	14.5	27
129	Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner. PLoS Pathogens, 2014, 10, e1004502.	4.7	338
130	Binding of Glutathione to Enterovirus Capsids Is Essential for Virion Morphogenesis. PLoS Pathogens, 2014, 10, e1004039.	4.7	37
131	The Crystal Structure of a Cardiovirus RNA-Dependent RNA Polymerase Reveals an Unusual Conformation of the Polymerase Active Site. Journal of Virology, 2014, 88, 5595-5607.	3.4	24
132	Identification and Characterization of a Proteolytically Primed Form of the Murine Coronavirus Spike Proteins after Fusion with the Target Cell. Journal of Virology, 2014, 88, 4943-4952.	3.4	27
133	Saffold cardiovirus and multiple sclerosis: no evidence for an association. Annals of Clinical and Translational Neurology, 2014, 1, 618-621.	3.7	6
134	Recruitment of PI4KIIIÎ ² to Coxsackievirus B3 Replication Organelles Is Independent of ACBD3, GBF1, and Arf1. Journal of Virology, 2014, 88, 2725-2736.	3.4	60
135	Enterovirus 2A ^{pro} Targets MDA5 and MAVS in Infected Cells. Journal of Virology, 2014, 88, 3369-3378.	3.4	182
136	Application of a cell-based protease assay for testing inhibitors of picornavirus 3C proteases. Antiviral Research, 2014, 103, 17-24.	4.1	17
137	Rhinovirus Uses a Phosphatidylinositol 4-Phosphate/Cholesterol Counter-Current for the Formation of Replication Compartments at the ER-Golgi Interface. Cell Host and Microbe, 2014, 16, 677-690.	11.0	189
138	Induction and suppression of innate antiviral responses by picornaviruses. Cytokine and Growth Factor Reviews, 2014, 25, 577-585.	7.2	55
139	Proteolytic Activation of the Porcine Epidemic Diarrhea Coronavirus Spike Fusion Protein by Trypsin in Cell Culture. Journal of Virology, 2014, 88, 7952-7961.	3.4	105
140	Fitness and Virulence of a Coxsackievirus Mutant That Can Circumnavigate the Need for Phosphatidylinositol 4-Kinase Class III Beta. Journal of Virology, 2014, 88, 3048-3051.	3.4	7
141	Coxsackievirus Cloverleaf RNA Containing a 5′ Triphosphate Triggers an Antiviral Response via RIG-I Activation. PLoS ONE, 2014, 9, e95927.	2.5	16
142	Dissecting Virus Entry: Replication-Independent Analysis of Virus Binding, Internalization, and Penetration Using Minimal Complementation of β-Galactosidase. PLoS ONE, 2014, 9, e101762.	2.5	14
143	Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. ELife, 2014, 3, e01535.	6.0	99
144	Identification of a new dengue virus inhibitor that targets the viral NS4B protein and restricts genomic RNA replication. Antiviral Research, 2013, 99, 165-171.	4.1	86

#	Article	IF	CITATIONS
145	The Receptor Binding Domain of the New Middle East Respiratory Syndrome Coronavirus Maps to a 231-Residue Region in the Spike Protein That Efficiently Elicits Neutralizing Antibodies. Journal of Virology, 2013, 87, 9379-9383.	3.4	204
146	Synthesis and Biological Properties of Novel Brefeldin A Analogues. Journal of Medicinal Chemistry, 2013, 56, 5872-5884.	6.4	26
147	Evolution of the Hemagglutinin Protein of the New Pandemic H1N1 Influenza Virus: Maintaining Optimal Receptor Binding by Compensatory Substitutions. Journal of Virology, 2013, 87, 13868-13877.	3.4	37
148	Cholesterol: fa(s)t-food for enterovirus genome replication. Trends in Microbiology, 2013, 21, 560-561.	7.7	3
149	Rhinovirus-Induced Calcium Flux Triggers NLRP3 and NLRC5 Activation in Bronchial Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 923-934.	2.9	124
150	MDA5 Localizes to Stress Granules, but This Localization Is Not Required for the Induction of Type I Interferon. Journal of Virology, 2013, 87, 6314-6325.	3.4	86
151	A Novel, Broad-Spectrum Inhibitor of Enterovirus Replication That Targets Host Cell Factor Phosphatidylinositol 4-Kinase IIIβ. Antimicrobial Agents and Chemotherapy, 2013, 57, 4971-4981.	3.2	96
152	Manipulation of the Porcine Epidemic Diarrhea Virus Genome Using Targeted RNA Recombination. PLoS ONE, 2013, 8, e69997.	2.5	62
153	Selective Serotonin Reuptake Inhibitor Fluoxetine Inhibits Replication of Human Enteroviruses B and D by Targeting Viral Protein 2C. Antimicrobial Agents and Chemotherapy, 2013, 57, 1952-1956.	3.2	81
154	Differential Susceptibility and Response of Primary Human Myeloid BDCA1+ Dendritic Cells to Infection with Different Enteroviruses. PLoS ONE, 2013, 8, e62502.	2.5	8
155	Cytokine and Chemokine Production by Human Pancreatic Islets Upon Enterovirus Infection. Diabetes, 2012, 61, 2030-2036.	0.6	49
156	XMRV and CFS—the sad end of a story. Lancet, The, 2012, 379, e27-e28.	13.7	16
157	(+)RNA viruses rewire cellular pathways to build replication organelles. Current Opinion in Virology, 2012, 2, 740-747.	5.4	133
158	MDA5 Detects the Double-Stranded RNA Replicative Form in Picornavirus-Infected Cells. Cell Reports, 2012, 2, 1187-1196.	6.4	190
159	Coxsackievirus mutants that can bypass host factor PI4KIIIβ and the need for high levels of PI4P lipids for replication. Cell Research, 2012, 22, 1576-1592.	12.0	110
160	Unusual Loop-Sequence Flexibility of the Proximal RNA Replication Element in EMCV. PLoS ONE, 2011, 6, e24818.	2.5	2
161	Seroepidemiology of Saffold Cardiovirus Type 2. Emerging Infectious Diseases, 2011, 17, 1572-3.	4.3	19
162	Prevalence of xenotropic murine leukaemia virus-related virus in patients with chronic fatigue syndrome in the Netherlands: retrospective analysis of samples from an established cohort. BMJ: British Medical Journal, 2010, 340, c1018-c1018.	2.3	143

#	Article	IF	CITATIONS
163	Differential IFN- \hat{I}^2/\hat{I}^2 production suppressing capacities of the leader proteins of mengovirus and foot-and-mouth disease virus. Cellular Microbiology, 2010, 12, 310-317.	2.1	17
164	Detection of Enterovirus RNA in Peripheral Blood Mononuclear Cells of Type 1 Diabetic Patients Beyond the Stage of Acute Infection. Viral Immunology, 2010, 23, 99-104.	1.3	66
165	Differential Effects of the Putative GBF1 Inhibitors Golgicide A and AG1478 on Enterovirus Replication. Journal of Virology, 2010, 84, 7535-7542.	3.4	43
166	Cross-Talk between Human Dendritic Cell Subsets Influences Expression of RNA Sensors and Inhibits Picornavirus Infection. Journal of Innate Immunity, 2010, 2, 360-370.	3.8	21
167	Phagocytosis of Enterovirus-Infected Pancreatic β-Cells Triggers Innate Immune Responses in Human Dendritic Cells. Diabetes, 2010, 59, 1182-1191.	0.6	37
168	Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication. Cell, 2010, 141, 799-811.	28.9	591
169	Mengovirus-Induced Rearrangement of the Nuclear Pore Complex: Hijacking Cellular Phosphorylation Machinery. Journal of Virology, 2009, 83, 3150-3161.	3.4	65
170	GBF1, a Guanine Nucleotide Exchange Factor for Arf, Is Crucial for Coxsackievirus B3 RNA Replication. Journal of Virology, 2009, 83, 11940-11949.	3.4	164
171	Antiapoptotic Activity of the Cardiovirus Leader Protein, a Viral "Security―Protein. Journal of Virology, 2009, 83, 7273-7284.	3.4	44
172	Interactions between Viral and Prokaryotic Pathogens in a Mixed Infection with Cardiovirus and Mycoplasma. Journal of Virology, 2009, 83, 9940-9951.	3.4	7
173	Random Mutagenesis Defines a Domain of Theiler's Virus Leader Protein That Is Essential for Antagonism of Nucleocytoplasmic Trafficking and Cytokine Gene Expression. Journal of Virology, 2009, 83, 11223-11232.	3.4	28
174	Saffold Virus, a Human Theiler's-Like Cardiovirus, Is Ubiquitous and Causes Infection Early in Life. PLoS Pathogens, 2009, 5, e1000416.	4.7	118
175	Identification of Potential Recombination Breakpoints in Human Parechoviruses. Journal of Virology, 2009, 83, 3379-3383.	3.4	33
176	Mutations in the Nonstructural Protein 3A Confer Resistance to the Novel Enterovirus Replication Inhibitor TTP-8307. Antimicrobial Agents and Chemotherapy, 2009, 53, 1850-1857.	3.2	68
177	Differential Membrane Association Properties and Regulation of Class I and Class II Arfs. Traffic, 2009, 10, 316-323.	2.7	25
178	The structure–function relationship of the enterovirus 3′-UTR. Virus Research, 2009, 139, 209-216.	2.2	59
179	Functional Analysis of Picornavirus 2B Proteins: Effects on Calcium Homeostasis and Intracellular Protein Trafficking. Journal of Virology, 2008, 82, 3782-3790.	3.4	110
180	Mouse Hepatitis Coronavirus RNA Replication Depends on GBF1-Mediated ARF1 Activation. PLoS Pathogens, 2008, 4, e1000088.	4.7	132

#	Article	IF	CITATIONS
181	The Thiazolobenzimidazole TBZE-029 Inhibits Enterovirus Replication by Targeting a Short Region Immediately Downstream from Motif C in the Nonstructural Protein 2C. Journal of Virology, 2008, 82, 4720-4730.	3.4	71
182	Phagocytosis of Picornavirus-Infected Cells Induces an RNA-Dependent Antiviral State in Human Dendritic Cells. Journal of Virology, 2008, 82, 2930-2937.	3.4	23
183	Reduction of phospholipase D activity during coxsackievirus infection. Journal of General Virology, 2007, 88, 3027-3030.	2.9	2
184	A New Inhibitor of Apoptosis from Vaccinia Virus and Eukaryotes. PLoS Pathogens, 2007, 3, e17.	4.7	103
185	Molecular Determinants of the Interaction between Coxsackievirus Protein 3A and Guanine Nucleotide Exchange Factor GBF1. Journal of Virology, 2007, 81, 5238-5245.	3.4	63
186	Breaking pseudo-twofold symmetry in the poliovirus 3'-UTR Y-stem by restoring Watson-Crick base pairs. Rna, 2007, 13, 781-792.	3.5	14
187	Echovirus infection causes rapid loss-of-function and cell death in human dendritic cells. Cellular Microbiology, 2007, 9, 1507-1518.	2.1	31
188	The mengovirus leader protein blocks interferon-α/β gene transcription and inhibits activation of interferon regulatory factor 3. Cellular Microbiology, 2007, 9, 2921-2930.	2.1	100
189	A Viral Protein that Blocks Arf1-Mediated COP-I Assembly by Inhibiting the Guanine Nucleotide Exchange Factor GBF1. Developmental Cell, 2006, 11, 191-201.	7.0	138
190	Polyadenylation of genomic RNA and initiation of antigenomic RNA in a positive-strand RNA virus are controlled by the same cis-element. Nucleic Acids Research, 2006, 34, 2953-2965.	14.5	50
191	Effects of Picornavirus 3A Proteins on Protein Transport and GBF1-Dependent COP-I Recruitment. Journal of Virology, 2006, 80, 11852-11860.	3.4	105
192	Nucleocytoplasmic Traffic Disorder Induced by Cardioviruses. Journal of Virology, 2006, 80, 2705-2717.	3.4	93
193	Structural and functional integrity of the coxsackievirus B3 oriR: spacing between coaxial RNA helices. Journal of General Virology, 2006, 87, 689-695.	2.9	15
194	The Coxsackievirus 2B Protein Increases Efflux of Ions from the Endoplasmic Reticulum and Golgi, thereby Inhibiting Protein Trafficking through the Golgi. Journal of Biological Chemistry, 2006, 281, 14144-14150.	3.4	88
195	Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. Journal of General Virology, 2006, 87, 103-113.	2.9	78
196	Structure-Function Analysis of the Coxsackievirus Protein 3A. Journal of Biological Chemistry, 2006, 281, 28232-28243.	3.4	28
197	Protein synthesis persists during necrotic cell death. Journal of Cell Biology, 2005, 168, 545-551.	5.2	67
198	A Proline-Rich Region in the Coxsackievirus 3A Protein Is Required for the Protein To Inhibit Endoplasmic Reticulum-to-Golgi Transport. Journal of Virology, 2005, 79, 5163-5173.	3.4	96

#	Article	IF	CITATIONS
199	Enterovirus protein 2B po(u)res out the calcium: a viral strategy to survive?. Trends in Microbiology, 2005, 13, 41-44.	7.7	65
200	Coxsackie B virus infection of mice: inoculation by the oral route protects the pancreas from damage, but not from infection. Journal of General Virology, 2005, 86, 3271-3280.	2.9	43
201	Mutational Analysis of Different Regions in the Coxsackievirus 2B Protein. Journal of Biological Chemistry, 2004, 279, 19924-19935.	3.4	42
202	The Coxsackievirus 2B Protein Suppresses Apoptotic Host Cell Responses by Manipulating Intracellular Ca2+ Homeostasis. Journal of Biological Chemistry, 2004, 279, 18440-18450.	3.4	116
203	Structure of the Pyrimidine-rich Internal Loop in the Poliovirus 3′-UTR: The Importance of Maintaining Pseudo-2-fold Symmetry in RNA Helices Containing Two Adjacent Non-canonical Base-pairs. Journal of Molecular Biology, 2003, 331, 759-769.	4.2	20
204	Determinants for Membrane Association and Permeabilization of the Coxsackievirus 2B Protein and the Identification of the Golgi Complex as the Target Organelle. Journal of Biological Chemistry, 2003, 278, 1012-1021.	3.4	84
205	Biological Significance of a Human Enterovirus B-Specific RNA Element in the 3′ Nontranslated Region. Journal of Virology, 2002, 76, 9900-9909.	3.4	43
206	Homomultimerization of the Coxsackievirus 2B Protein in Living Cells Visualized by Fluorescence Resonance Energy Transfer Microscopy. Journal of Virology, 2002, 76, 9446-9456.	3.4	50
207	The Mengovirus Leader Protein Suppresses Alpha/Beta Interferon Production by Inhibition of the Iron/Ferritin-Mediated Activation of NF-κB. Journal of Virology, 2002, 76, 9664-9672.	3.4	70
208	Manipulation of Disulfide Bonds Differentially Affects the Intracellular Transport, Sorting, and Processing of Neuroendocrine Secretory Proteins. Journal of Neurochemistry, 2002, 71, 402-409.	3.9	17
209	Trans-complementation of a genetic defect in the coxsackie B3 virus 2B protein. Journal of General Virology, 2002, 83, 341-350.	2.9	3
210	Multimerization reactions of coxsackievirus proteins 2B, 2C and 2BC: a mammalian two-hybrid analysis. Journal of General Virology, 2002, 83, 783-793.	2.9	47
211	Intracellular transport, sorting, and proteolytic processing of regulated secretory proteins does not require protein sulfation. Molecular and Cellular Endocrinology, 1997, 136, 29-35.	3.2	18
212	Fatal Intrauterine Infection Associated with Mycoplasma hominis. Clinical Infectious Diseases, 1992, 15, 753-754.	5.8	6
213	Remodeling Cellular Membranes. , 0, , 181-193.		1