Qiwen Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3830106/publications.pdf

Version: 2024-02-01

759233 752698 21 407 12 20 citations h-index g-index papers 21 21 21 518 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Coupling Localized Laser Writing and Nonlocal Recrystallization in Perovskite Crystals for Reversible Multidimensional Optical Encryption. Advanced Materials, 2022, 34, e2201413.	21.0	27
2	Transparent nanocrystal-in-glass composite (NGC) fibers for multifunctional temperature and pressure sensing. Fundamental Research, 2022, , .	3.3	1
3	Highly thermostable fluoride nanocrystal-in-glass composites (NGCs) for mid-infrared emission. Journal of Materials Chemistry C, 2022, 10, 9882-9890.	5.5	3
4	Nanocrystal-in-glass composite (NGC): A powerful pathway from nanocrystals to advanced optical materials. Progress in Materials Science, 2022, 130, 100998.	32.8	12
5	Tm ³⁺ /Cr ³⁺ Codoped Dualâ€Phase Transparent Glassâ€Ceramics for Light Conversion in Photosynthesis. Advanced Photonics Research, 2021, 2, 2000117.	3.6	1
6	Embedding carbon dots in Eu ³⁺ â€doped metalâ€organic framework for labelâ€free ratiometric fluorescence detection of Fe ³⁺ ions. Journal of the American Ceramic Society, 2021, 104, 886-895.	3.8	31
7	An organic microlaser based on an aggregation-induced emission fluorophore for tensile strain sensing. Journal of Materials Chemistry C, 2021, 9, 4888-4894.	5.5	6
8	Emission Color Manipulation in Transparent Nanocrystalsâ€inâ€Glass Composites Fabricated by Solutionâ€Combustion Process. Advanced Optical Materials, 2020, 8, 1901696.	7.3	11
9	Controllable synthesis of Eu ³⁺ â€doped Y ₂ O ₃ nanocrystal/gâ€C ₃ N ₄ composites with tunable fluorescence. Journal of the American Ceramic Society, 2020, 103, 4411-4419.	3.8	6
10	Enhanced 2µm Midâ€Infrared Laser Output from Tm 3+ â€Activated Glass Ceramic Microcavities. Laser and Photonics Reviews, 2020, 14, 1900396.	8.7	21
11	Microlaser Output from Rareâ€Earth Ionâ€Doped Nanocrystalâ€inâ€Glass Microcavities. Advanced Optical Materials, 2019, 7, 1900197.	7.3	34
12	Weakening thermal quenching to enhance luminescence of Er ³⁺ doped <i>β</i> â€NaYF ₄ nanocrystals via acidâ€treatment. Journal of the American Ceramic Society, 2019, 102, 6027-6037.	3.8	12
13	Engineering Tunable Broadband Nearâ€Infrared Emission in Transparent Rareâ€Earth Doped Nanocrystalsâ€inâ€Glass Composites via a Bottomâ€Up Strategy. Advanced Optical Materials, 2019, 7, 1801482.	7.3	46
14	Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials. Scientific Reports, 2017, 7, 43186.	3.3	22
15	Multifunctional magnetic-fluorescent Ni-doped ZnAl 2 O 4 nanoparticles with second biological NIR window fluorescence. Materials Research Bulletin, 2017, 93, 310-317.	5.2	14
16	Controllable Phase Transformation and Mid-infrared Emission from Er3+-Doped Hexagonal-/Cubic-NaYF4 Nanocrystals. Scientific Reports, 2016, 6, 29871.	3.3	27
17	Regulating Mid-infrared to Visible Fluorescence in Monodispersed Er3+-doped La2O2S (La2O2SO4) Nanocrystals by Phase Modulation. Scientific Reports, 2016, 6, 37141.	3.3	15
18	Controllable Synthesis of Monodisperse Er3+-Doped Lanthanide Oxyfluorides Nanocrystals with Intense Mid-Infrared Emission. Scientific Reports, 2016, 6, 35348.	3.3	10

QIWEN PAN

#	Article	IF	CITATIONS
19	Quantum Dot-Doped Glasses and Fibers: Fabrication and Optical Properties. Frontiers in Materials, 2015, 2, .	2.4	27
20	Controllable synthesis of Zn ₂ GeO ₄ :Eu nanocrystals with multi-color emission for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 5419-5429.	5.5	54
21	Facile hydrothermal synthesis of Mn doped ZnS nanocrystals and luminescence properties investigations. Journal of Alloys and Compounds, 2013, 579, 300-304.	5.5	27