Alan Cross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3828396/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabotropic Glutamate Receptors 2 and 3 as Targets for Treating Nicotine Addiction. Biological Psychiatry, 2018, 83, 947-954.	1.3	21
2	Differential Pharmacology and Binding of mGlu ₂ Receptor Allosteric Modulators. Molecular Pharmacology, 2018, 93, 526-540.	2.3	27
3	Investigating the neuroimmunogenic architecture of schizophrenia. Molecular Psychiatry, 2018, 23, 1251-1260.	7.9	59
4	Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nature Neuroscience, 2018, 21, 1117-1125.	14.8	300
5	Novel inhibitors of As(III) S-adenosylmethionine methyltransferase (AS3MT) identified by virtual screening. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3231-3235.	2.2	6
6	Developmental seizures and mortality result from reducing GABAA receptor $\hat{I}\pm 2$ -subunit interaction with collybistin. Nature Communications, 2018, 9, 3130.	12.8	53
7	Altered expression of histamine signaling genes in autism spectrum disorder. Translational Psychiatry, 2017, 7, e1126-e1126.	4.8	89
8	GABAA receptor occupancy by subtype selective GABAAα2,3 modulators: PET studies in humans. Psychopharmacology, 2017, 234, 707-716.	3.1	21
9	From bench to bedside: mGluR2 positive allosteric modulators as medications to treat substance use disorders. Psychopharmacology, 2017, 234, 1347-1355.	3.1	12
10	CNS Target Identification and Validation: Avoiding the Valley of Death or Naive Optimism?. Annual Review of Pharmacology and Toxicology, 2017, 57, 171-187.	9.4	32
11	AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: A proof of principle study. Schizophrenia Research, 2016, 172, 152-157.	2.0	60
12	A human-specific AS3MT isoform and BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nature Medicine, 2016, 22, 649-656.	30.7	142
13	Quetiapine and its metabolite norquetiapine: translation from <i>in vitro</i> pharmacology to <i>in vivo</i> efficacy in rodent models. British Journal of Pharmacology, 2016, 173, 155-166.	5.4	29
14	Derisking Psychiatric Drug Development. Journal of Clinical Psychopharmacology, 2016, 36, 419-421.	1.4	20
15	The mGluR2 Positive Allosteric Modulator, AZD8529, and Cue-Induced Relapse to Alcohol Seeking in Rats. Neuropsychopharmacology, 2016, 41, 2932-2940.	5.4	35
16	A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology, 2016, 233, 1119-1130.	3.1	59
17	Attenuation of nicotine-taking and nicotine-seeking behavior by the mGlu2 receptor positive allosteric modulators AZD8418 and AZD8529 in rats. Psychopharmacology, 2016, 233, 1801-1814.	3.1	22
18	Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Molecular and Cellular Neurosciences, 2016, 73, 104-115.	2.2	49

#	Article	IF	CITATIONS
19	Early postnatal GABAA receptor modulation reverses deficits in neuronal maturation in a conditional neurodevelopmental mouse model of DISC1. Molecular Psychiatry, 2016, 21, 1449-1459.	7.9	32
20	The effects of the nonselective benzodiazepine lorazepam and the α ₂ /α ₃ subunitâ€selective GABA _A receptor modulators AZD7325 and AZD6280 on plasma prolactin levels. Clinical Pharmacology in Drug Development, 2015, 4, 149-154.	1.6	10
21	BrainSeq: Neurogenomics to Drive Novel Target Discovery for Neuropsychiatric Disorders. Neuron, 2015, 88, 1078-1083.	8.1	92
22	The Novel Metabotropic Glutamate Receptor 2 Positive Allosteric Modulator, AZD8529, Decreases Nicotine Self-Administration and Relapse in Squirrel Monkeys. Biological Psychiatry, 2015, 78, 452-462.	1.3	52
23	AZD6280, a Novel Partial Î ³ -Aminobutyric Acid A Receptor Modulator, Demonstrates a Pharmacodynamically Selective Effect Profile in Healthy Male Volunteers. Journal of Clinical Psychopharmacology, 2015, 35, 22-33.	1.4	19
24	Alzheimer's disease research and development: a call for a new research roadmap. Annals of the New York Academy of Sciences, 2014, 1313, 1-16.	3.8	31
25	The central nervous system effects of the partial <scp>GABA</scp> â€ <scp>A</scp> α _{2,3} â€selective receptor modulator <scp>AZD7325</scp> in comparison with lorazepam in healthy males. British Journal of Clinical Pharmacology, 2014, 78, 1298-1314.	2.4	31
26	P.4.d.003 Neurochemical validation of centrally active delta-opioid receptor agonists as novel treatment of anxiety disorders. European Neuropsychopharmacology, 2008, 18, S496.	0.7	3
27	Differential neuroprotective effects for three GABA-potentiating compounds in a model of hypoxia–ischemia. Brain Research, 2005, 1035, 196-205.	2.2	19
28	Characterization of IMPY as a potential imaging agent for ?-amyloid plaques in double transgenic PSAPP mice. European Journal of Nuclear Medicine and Molecular Imaging, 2004, 31, 1136-45.	6.4	65
29	Effect of NXYâ€059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat; studies on dose, plasma concentration and therapeutic time window. British Journal of Pharmacology, 2002, 135, 103-112.	5.4	143
30	Neuroprotective efficacy of AR-A008055, a clomethiazole analogue, in a global model of acute ischaemic stroke and its effect on ischaemia-induced glutamate and GABA efflux in vitro. Neuropharmacology, 2001, 41, 159-166.	4.1	15
31	The interaction of AR-A008055 and its enantiomers with the CABAA receptor complex and their sedative, muscle relaxant and anticonvulsant activity. Neuropharmacology, 2001, 41, 167-174.	4.1	10
32	The metabolism of clomethiazole in gerbils and the neuroprotective and sedative activity of the metabolites. British Journal of Pharmacology, 2000, 129, 95-100.	5.4	10
33	Clomethiazole is neuroprotective in models of global and focal cerebral ischemia when infused at doses producing clinically relevant plasma concentrations. Brain Research, 2000, 862, 59-62.	2.2	24
34	Antiparkinson potential of δ-opioid receptor agonists. European Journal of Pharmacology, 2000, 396, 101-107.	3.5	34
35	Clomethiazole protects against hemineglect in a primate model of stroke. Brain Research Bulletin, 2000, 52, 21-29.	3.0	53
36	Disruption of acquisition and performance of operant response-duration differentiation by unilateral nigrostriatal lesions. Behavioural Brain Research, 2000, 114, 65-77.	2.2	13

#	Article	IF	CITATIONS
37	A comparative study in rats of the in vitro and in vivo pharmacology of the acetylcholinesterase inhibitors tacrine, donepezil and NXX-066. Neuropharmacology, 1999, 38, 181-193.	4.1	83
38	Functional Benefit from Clomethiazole Treatment after Focal Cerebral Ischemia in a Nonhuman Primate Species. Experimental Neurology, 1999, 156, 121-129.	4.1	55
39	Heat-pulse study of the phonon emission by hot two-dimensional holes in a gallium arsenide heterojunction. Semiconductor Science and Technology, 1997, 12, 849-857.	2.0	9
40	The Effect of Oedema and Tissue Swelling on the Measurement of Neuroprotection; a Study using Chlormethiazole and Permanent Middle Cerebral Artery Occlusion in Rats. Experimental Neurology, 1996, 5, 81-85.	1.7	20
41	A Behavioural and Neurochemical Study in Rats of the Pharmacology of Loreclezole, a Novel Allosteric Modulator of the GABA A Receptor. Neuropharmacology, 1996, 35, 1243-1250.	4.1	26
42	NMDA-RECEPTOR ANTAGONISM SEVERELY IMPAIRS A VISUAL-SPATIAL CONDITIONAL DISCRIMINATION TASK IN THE RAT. Behavioural Pharmacology, 1995, 6, 628.	1.7	0
43	Review of the pharmacology and clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA or "Ecstasyâ€). Psychopharmacology, 1995, 119, 247-260.	3.1	394
44	Characterisation of learning and memory deficits following NMDA receptor antagonism. Amino Acids, 1995, 8, 79-87.	2.7	4
45	The neuroprotective effect of chlormethiazole on ischaemic neuronal damage following permanent middle cerebral artery ischaemia in the rat. Experimental Neurology, 1995, 4, 323-328.	1.7	59
46	Animal models of acute ischaemic stroke: can they predict clinically successful neuroprotective drugs?. Trends in Pharmacological Sciences, 1995, 16, 123-128.	8.7	123
47	Attenuation by chlormethiazole of oedema following focal ischaemia in the cerebral cortex of the rat. Neuroscience Letters, 1994, 173, 27-30.	2.1	13
48	The neuroprotective actions of chlormethiazole. Progress in Neurobiology, 1994, 44, 463-484.	5.7	24
49	Chlormethiazole antagonises seizures induced by N-methyl-dl-aspartate without interacting with the NMDA receptor complex. Psychopharmacology, 1993, 112, 403-406.	3.1	14
50	Effect of chlormethiazole, dizocilpine and pentobarbital on harmaline-induced increase of cerebellar cyclic GMP and tremor. Psychopharmacology, 1993, 111, 96-98.	3.1	58
51	The effects of chlormethiazole and nimodipine on cortical infarct area after focal cerebral ischaemia in the rat. Neuroscience, 1993, 53, 837-844.	2.3	76
52	Neurotransmitters and Second Messengers in Aging and Alzheimer's Disease. Annals of the New York Academy of Sciences, 1993, 695, 19-26.	3.8	27
53	Studies on the enhancement of 5-hydroxytryptamine-mediated behaviour by chlormethiazole and phenytoin. Journal of Psychopharmacology, 1992, 6, 370-375.	4.0	2
54	The immediate consequences of middle cerebral artery occlusion on GABA synthesis in mouse cortex and cerebellum. Neuroscience Letters, 1992, 138, 141-144.	2.1	23

#	Article	IF	CITATIONS
55	The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: Evidence for the protective effect of chlormethiazole. Neuropharmacology, 1992, 31, 315-321.	4.1	73
56	The effect of 6-aminonicotinamide on the concentration and synthesis of acetylcholine in rat brain. Neurochemistry International, 1991, 19, 159-164.	3.8	0
57	A Comparison of [3H]MK-801 and N-[1-(2-Thienyl)cyclohexyl]-3,4-[3H]Piperidine Binding to the N-Methyl-D-Aspartate Receptor Complex in Human Brain. Journal of Neurochemistry, 1991, 56, 1248-1254.	3.9	18
58	Reversal by tetrahydroaminoacridine of scopolamine-induced memory and performance deficits in rats. Psychopharmacology, 1991, 105, 134-136.	3.1	46
59	Spermidine enhancement of [3H]MK-801 binding to the NMDA receptor complex in human cortical membranes. European Journal of Pharmacology, 1990, 189, 195-200.	2.6	21
60	Action of chlormethiazole in a model of ethanol withdrawal. Psychopharmacology, 1990, 102, 239-242.	3.1	25
61	Serotonin in Alzheimer-type Dementia and Other Dementing Illnesses. Annals of the New York Academy of Sciences, 1990, 600, 405-415.	3.8	84
62	High affinity serotonin binding sites in human brain: a comparison of cerebral cortex and basal ganglia. Journal of Neural Transmission, 1989, 76, 211-219.	2.8	10
63	Frontal Cortical and Left Temporal Glutamatergic Dysfunction in Schizophrenia. Journal of Neurochemistry, 1989, 52, 1781-1786.	3.9	382
64	Loss of glycine-dependent radioligand binding to the receptor complex in patients with Alzheimer's disease. Neuroscience Letters, 1989, 101, 62-66.	2.1	63
65	The binding of [3H]thienyl cyclohexylpiperidine ([3H]TCP) to the NDDA-phencyclidine receptor complex. Neuropharmacology, 1989, 28, 1-7.	4.1	36
66	The effects of GABAB receptor agonists and antagonists on potassium-stimulated [Ca2+]i in rat brain synaptosomes. Neuropharmacology, 1989, 28, 699-704.	4.1	28
67	Reduced d-[3H]aspartate binding in Down's syndrome brains. Brain Research, 1989, 484, 273-278.	2.2	13
68	Autoradiographic Visualization of Kappa Opioid Receptors with Labelled Dynorphins in Guinea Pig Brain. Journal of Receptors and Signal Transduction, 1989, 9, 171-180.	1.2	5
69	Loss of cortical GABA uptake sites in Alzheimer's disease. Journal of Neural Transmission, 1988, 71, 219-226.	2.8	47
70	Regional changes in [3H]d-aspartate and [3H]TCP binding sites in Alzheimer's disease brains. Brain Research, 1988, 462, 76-82.	2.2	79
71	Characteristics of 125I-Bolton-Hunter labelled cholecystokinin binding in human brain. Neuropeptides, 1988, 11, 73-76.	2.2	13
72	An autoradiographic analysis of serotonin receptors in human temporal cortex: Changes in Alzheimer-type dementia. Neurochemistry International, 1988, 13, 89-96.	3.8	38

#	Article	IF	CITATIONS
73	Autoradiographic localization of delta opiate receptors in rat and human brain. Neuroscience, 1988, 27, 497-506.	2.3	50
74	Autoradiographic Analysis of [3H]Kainic Acid Binding in Primate Braind. Journal of Receptors and Signal Transduction, 1987, 7, 775-797.	1.2	10
75	Glutamate deficits in Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 1987, 50, 357-358.	1.9	31
76	Subtraction autoradiography of opiate receptor subtypes in human brain. Brain Research, 1987, 418, 343-348.	2.2	63
77	Sodium dependent d-[3H]aspartate binding in cerebral cortex in patients with Alzheimer's and Parkinson's diseases. Neuroscience Letters, 1987, 79, 213-217.	2.1	45
78	Neural mechanisms mediating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the monkey: Relative contributions of the striatopallidal and striatonigral pathways as suggested by 2-deoxyglucose uptake. Neuroscience Letters, 1986, 63, 61-65.	2.1	71
79	Reduced high-affinity glutamate uptake sites in the brains of patients with Huntington's disease. Neuroscience Letters, 1986, 67, 198-202.	2.1	64
80	The selectivity of the reduction of serotonin S2 receptors in Alzheimer-type dementia. Neurobiology of Aging, 1986, 7, 3-7.	3.1	113
81	The association of [3H]d-aspartate binding and high-affinity glutamate uptake in the human brain. Neuroscience Letters, 1986, 63, 121-124.	2.1	44
82	Brain serotonin receptors in Huntington's disease. Neurochemistry International, 1986, 9, 431-435.	3.8	14
83	Autoradiographic distribution of dynorphin1–9 binding sites in primate brain. Neuropeptides, 1986, 8, 71-76.	2.2	20
84	NEUROPEPTIDES AND DOPAMINE IN THE MARMOSET. Brain, 1986, 109, 143-157.	7.6	50
85	Neurochemical changes in brains of mice infected with Pichinde virus. Medical Microbiology and Immunology, 1986, 175, 213-215.	4.8	2
86	Subclinical Infections in Mice Resulting from the Modulation of a Lethal Dose of Semliki Forest Virus with Defective Interfering Viruses: Neurochemical Abnormalities in the Central Nervous System. Journal of General Virology, 1986, 67, 1727-1732.	2.9	23
87	Sites of the neurotoxic action of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the macaque monkey include the ventral tegmental area and the locus coeruleus. Neuroscience Letters, 1985, 61, 195-200.	2.1	155
88	Cortical serotonin receptor subtypes after lesion of ascending cholinergic neurones in rat. Neuroscience Letters, 1985, 60, 261-265.	2.1	22
89	Loss of endoplasmic reticulum-associated enzymes in affected brain regions in Huntington's disease and Alzheimer-type dementia. Journal of the Neurological Sciences, 1985, 71, 137-143.	0.6	20
90	Herpes simplex virus encephalitis. Journal of the Neurological Sciences, 1985, 71, 325-337.	0.6	37

#	Article	IF	CITATIONS
91	Neurotransmitter metabolites, enzymes and receptors in experimental scrapie. Journal of the Neurological Sciences, 1985, 70, 231-241.	0.6	23
92	Dissociation of neuropeptide Y and somatostatin in Parkinson's disease. Brain Research, 1985, 337, 197-200.	2.2	52
93	Serotonin Receptor Changes in Dementia of the Alzheimer Type. Journal of Neurochemistry, 1984, 43, 1574-1581.	3.9	191
94	Striatal dopamine receptors in Alzheimer-type dementia. Neuroscience Letters, 1984, 52, 1-6.	2.1	87
95	Muscarinic cholinergic receptors in a rat phaeochromocytoma cell line. Biochemical and Biophysical Research Communications, 1984, 119, 163-167.	2.1	18
96	Studies on neurotransmitter receptor systems in neocortex and hippocampus in senile dementia of the Alzheimer-type. Journal of the Neurological Sciences, 1984, 64, 109-117.	0.6	134
97	Elevation of neuropeptide Y (NPY) in substantia innominata in Alzheimer's type dementia. Journal of the Neurological Sciences, 1984, 64, 325-331.	0.6	105
98	Neurotransmitter receptors and monoamine metabolites in the brains of patients with Alzheimer-type dementia and depression, and suicides. Neuropharmacology, 1984, 23, 1561-1569.	4.1	296
99	Neurotransmitter receptors as glycoproteins. Experientia, 1983, 39, 1168-1171.	1.2	4
100	Behavioural and biochemical effects of chronic treatment with amphetamine in the vervet monkey. Neuropharmacology, 1983, 22, 551-554.	4.1	14
101	Preferential inhibition of ligand binding to calf striatal dopamine D1 receptors by SCH 23390. Neuropharmacology, 1983, 22, 1327-1329.	4.1	63
102	Monoamine metabolism in senile dementia of Alzheimer type. Journal of the Neurological Sciences, 1983, 60, 383-392.	0.6	153
103	Neuropeptides in Alzheimer type dementia. Journal of the Neurological Sciences, 1983, 62, 159-170.	0.6	222
104	Irreversible interaction of β-haloalkylamine derivatives with dopamine D1 and D2 receptors. Life Sciences, 1983, 32, 2733-2740.	4.3	15
105	Dopamine D1 receptors in human parathyroid gland: In vitro and in vivo studies. Life Sciences, 1983, 33, 743-747.	4.3	11
106	Spontaneous Orofacial Dyskinesia and Dopaminergic Function in Rats After 6 Months of Neuroleptic Treatment. Science, 1983, 220, 530-532.	12.6	193
107	Interactions of [3H]LSD with serotonin receptors in human brain. European Journal of Pharmacology, 1982, 82, 77-80.	3.5	33
108	Behavioural and biochemical effects of chronic amphetamine treatment in the vervet monkey. Psychopharmacology, 1982, 78, 245-251.	3.1	69

#	Article	IF	CITATIONS
109	Kainic acid lesions dissociate [3H]spiperone and [3H]cis-flupenthixol binding sites in rat striatum. European Journal of Pharmacology, 1981, 71, 327-332.	3.5	31
110	Neuropathological and biochemical observations on the noradrenergic system in Alzheimer's disease. Journal of the Neurological Sciences, 1981, 51, 279-287.	0.6	170
111	VI. The concurrent estimation of the major monoamine metabolites in human and non-human primate brain by HPLC with fluorescence and electrochemical detection. Life Sciences, 1981, 28, 499-505.	4.3	77
112	Neurochemical activities in human temporal lobe related to aging and Alzheimer-type changes. Neurobiology of Aging, 1981, 2, 251-256.	3.1	215
113	Neurotransmitter receptors in brain in schizophrenia. Acta Psychiatrica Scandinavica, 1981, 63, 20-28.	4.5	54
114	Studies on possible mechanisms of action of electroconvulsive therapy; effects of repeated electrically induced seizures on rat brain receptors for monoamines and other neurotransmitters. Psychopharmacology, 1981, 73, 345-349.	3.1	121
115	Effect of chronic amphetamine administration on central dopaminergic mechanisms in the vervet. Psychopharmacology, 1981, 74, 213-216.	3.1	19
116	3H-flupenthixol binding in post-mortem brains of schizophrenics: Evidence for a selective increase in dopamine D2 receptors. Psychopharmacology, 1981, 74, 122-124.	3.1	162
117	Substantia Nigra ?-Aminobutyric Acid Receptors in Huntington's Disease. Journal of Neurochemistry, 1981, 37, 321-324.	3.9	11
118	Characterisation of denervation supersensitivity in the striatonigral GABA pathway of the kainic acid-lesioned rat and in Huntington's disease. Brain Research Bulletin, 1980, 5, 825-828.	3.0	18
119	3H-mianserin binding in calf caudate: Possible involvement of serotonin receptors in anti-depressant drug action. Biochemical Pharmacology, 1980, 29, 2709-2712.	4.4	17
120	The striatonigral GABA pathway: Functional and neurochemical characteristics in rats with unilateral striatal kainic acid lesions. European Journal of Pharmacology, 1980, 67, 27-32.	3.5	12
121	Characteristics of 3H-cis-flupenthixol binding to calf brain membranes. European Journal of Pharmacology, 1980, 65, 341-347.	3.5	80
122	Gaba-ergic properties of baclofen in vivo and in vitro. Brain Research Bulletin, 1980, 5, 503-505.	3.0	11