
Anne T Collins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827927/publications.pdf Version: 2024-02-01

ANNET COLLINS

#	Article	IF	CITATIONS
1	Building a Systematic Online Living Evidence Summary of COVID-19 Research. Journal of the European Association for Health Information and Libraries, 2021, 17, 21-26.	0.2	1
2	Overexpression of Placental Growth Factor in Stromal Cells from Benign Prostatic Hyperplasia: Another Piece in the Puzzle?. European Urology Open Science, 2020, 21, 29-32.	0.2	0
3	Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Research, 2019, 47, 3937-3956.	6.5	30
4	The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy. Scientific Reports, 2019, 9, 5120.	1.6	11
5	Phenotype-independent DNA methylation changes in prostate cancer. British Journal of Cancer, 2018, 119, 1133-1143.	2.9	14
6	Methodologies Applied to Establish Cell Cultures in Prostate Cancer. Methods in Molecular Biology, 2018, 1786, 55-66.	0.4	1
7	Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patientâ€derived xenograft (PDX) models. Prostate, 2018, 78, 1262-1282.	1.2	76
8	A systematic review of the validity of patient derived xenograft (PDX) models: the implications for translational research and personalised medicine. PeerJ, 2018, 6, e5981.	0.9	59
9	A systematic review of the asymmetric inheritance of cellular organelles in eukaryotes: A critique of basic science validity and imprecision. PLoS ONE, 2017, 12, e0178645.	1.1	11
10	Spontaneous development of Epstein-Barr Virus associated human lymphomas in a prostate cancer xenograft program. PLoS ONE, 2017, 12, e0188228.	1.1	16
11	Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget, 2017, 8, 56698-56713.	0.8	95
12	Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells. Methods in Molecular Biology, 2016, 1443, 181-201.	0.4	16
13	Telomerase Activity and Telomere Length in Human Benign Prostatic Hyperplasia Stem-like Cells and Their Progeny Implies the Existence of Distinct Basal and Luminal Cell Lineages. European Urology, 2016, 69, 551-554.	0.9	15
14	Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget, 2016, 7, 51965-51980.	0.8	35
15	Construction of therapeutically relevant human prostate epithelial fate map by utilising miRNA and mRNA microarray expression data. British Journal of Cancer, 2015, 113, 611-615.	2.9	8
16	miR-25 Modulates Invasiveness and Dissemination of Human Prostate Cancer Cells via Regulation of αv- and α6-Integrin Expression. Cancer Research, 2015, 75, 2326-2336.	0.4	91
17	Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17. Cellular Signalling, 2015, 27, 1325-1335.	1.7	26
18	MicroRNA Expression Profile of Primary Prostate Cancer Stem Cells as a Source of Biomarkers and Therapeutic Targets. European Urology, 2015, 67, 7-10.	0.9	61

ANNE T COLLINS

#	Article	IF	CITATIONS
19	Conserved Two-Step Regulatory Mechanism of Human Epithelial Differentiation. Stem Cell Reports, 2014, 2, 180-188.	2.3	18
20	DNA hypermethylation in prostate cancer is a consequence of aberrant epithelial differentiation and hyperproliferation. Cell Death and Differentiation, 2014, 21, 761-773.	5.0	27
21	HDAC inhibitor confers radiosensitivity to prostate stem-like cells. British Journal of Cancer, 2013, 109, 3023-3033.	2.9	54
22	Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nature Communications, 2013, 4, 1623.	5.8	49
23	Prominin-1 (CD133) Expression in the Prostate and Prostate Cancer: A Marker for Quiescent Stem Cells. Advances in Experimental Medicine and Biology, 2013, 777, 167-184.	0.8	25
24	Retinoic acid represses invasion and stem cell phenotype by induction of the metastasis suppressors RARRES1 and LXN. Oncogenesis, 2013, 2, e45-e45.	2.1	46
25	A preclinical xenograft model of prostate cancer using human tumors. Nature Protocols, 2013, 8, 836-848.	5.5	90
26	JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells. Cancer Research, 2013, 73, 5288-5298.	0.4	152
27	Promoter Hypermethylation. , 2013, , 41-70.		0
28	Human Epithelial Basal Cells Are Cells of Origin of Prostate Cancer, Independent of CD133 Status. Stem Cells, 2012, 30, 1087-1096.	1.4	73
29	Prostate cancer stem cells: Are they androgen-responsive?. Molecular and Cellular Endocrinology, 2012, 360, 14-24.	1.6	37
30	Prostate Cancer Stem Cells: Do They Have a Basal or Luminal Phenotype?. Hormones and Cancer, 2011, 2, 47-61.	4.9	82
31	Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer. Molecular Cancer, 2011, 10, 94.	7.9	36
32	The calcium sensor STIM1 is regulated by androgens in prostate stromal cells. Prostate, 2011, 71, 1646-1655.	1.2	27
33	Cancer Stem Cells in Prostate Cancer. , 2011, , 99-116.		0
34	Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Experimental Cell Research, 2010, 316, 3161-3171.	1.2	23
35	Modeling the Prostate Stem Cell Niche: An Evaluation of Stem Cell Survival and Expansion In Vitro. Stem Cells and Development, 2010, 19, 537-546.	1.1	33
36	Regeneration of interest in the prostate. Nature Reviews Urology, 2009, 6, 184-186.	1.9	6

ANNE T COLLINS

#	Article	IF	CITATIONS
37	Inflammation as the primary aetiological agent of human prostate cancer: A stem cell connection?. Journal of Cellular Biochemistry, 2008, 105, 931-939.	1.2	38
38	Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biology, 2008, 9, R83.	13.9	191
39	Androgen receptor signalling in prostate: Effects of stromal factors on normal and cancer stem cells. Molecular and Cellular Endocrinology, 2008, 288, 30-37.	1.6	68
40	An Internal Polyadenylation Signal Substantially Increases Expression Levels of Lentivirus-Delivered Transgenes but Has the Potential to Reduce Viral Titer in a Promoter-Dependent Manner. Human Gene Therapy, 2008, 19, 840-850.	1.4	31
41	Prostate Cancer Stem Cells: A New Target for Therapy. Journal of Clinical Oncology, 2008, 26, 2862-2870.	0.8	301
42	Primary Cultures of Human Vestibular Schwannoma. Otology and Neurotology, 2007, 28, 258-263.	0.7	6
43	Prostate cancer stem cells. European Journal of Cancer, 2006, 42, 1213-1218.	1.3	141
44	KGF suppresses $\hat{l}\pm 2\hat{l}^21$ integrin function and promotes differentiation of the transient amplifying population in human prostatic epithelium. Journal of Cell Science, 2006, 119, 1416-1424.	1.2	38
45	A tumour stem cell hypothesis for the origins of prostate cancer. BJU International, 2005, 96, 1219-1223.	1.3	66
46	Identification of degradome components associated with prostate cancer progression by expression analysis of human prostatic tissues. British Journal of Cancer, 2005, 92, 2171-2180.	2.9	163
47	Prospective Identification of Tumorigenic Prostate Cancer Stem Cells. Cancer Research, 2005, 65, 10946-10951.	0.4	2,564
48	CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 2004, 117, 3539-3545.	1.2	714
49	Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression. Journal of Cell Science, 2001, 114, 3865-3872.	1.2	316
50	Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. Journal of Endocrinology, 1999, 160, 257-266.	1.2	96
51	Basal cells are progenitors of luminal cells in primary cultures of differentiating human prostatic epithelium. , 1998, 37, 149-160.		135
52	Effects of a new 5α reductase inhibitor (epristeride) on human prostate cell cultures. , 1997, 32, 259-265.		9
53	Prostate Cancer Stem Cells 0 111-134.		0 _