Benedikt Westermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827873/publications.pdf

Version: 2024-02-01

87 papers

17,812 citations

50276 46 h-index 86 g-index

94 all docs 94 docs citations

times ranked

94

26329 citing authors

#	Article	IF	CITATIONS
1	Mitochondrial shape alteration by metabolites. Nature Cell Biology, 2022, 24, 410-412.	10.3	2
2	Mitochondria are mixed during cell division. Nature, 2021, 591, 535-537.	27.8	1
3	Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO Journal, 2021, 40, e107913.	7.8	18
4	Pathways shaping the mitochondrial inner membrane. Open Biology, 2021, 11, 210238.	3.6	34
5	Asymmetric inheritance of mitochondria in yeast. Biological Chemistry, 2020, 401, 779-791.	2.5	12
6	Systematic analysis of nuclear gene function in respiratory growth and expression of the mitochondrial genome in S. cerevisiae. Microbial Cell, 2020, 7, 234-249.	3.2	20
7	Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell, 2018, 5, 4-31.	3.2	158
8	Impact of F1Fo-ATP-synthase dimer assembly factors on mitochondrial function and organismic aging. Microbial Cell, 2018, 5, 198-207.	3.2	15
9	Analysis of Yeast Mitochondria by Electron Microscopy. Methods in Molecular Biology, 2017, 1567, 293-314.	0.9	15
10	With the Help of MOM: Mitochondrial Contributions to Cellular Quality Control. Trends in Cell Biology, 2017, 27, 441-452.	7.9	26
11	Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. Journal of Cell Biology, 2017, 216, 2481-2498.	5.2	46
12	Coi1 is a novel assembly factor of the yeast complex III–complex IV supercomplex. Molecular Biology of the Cell, 2017, 28, 2609-2622.	2.1	13
13	Lipid Droplets Guard Mitochondria during Autophagy. Developmental Cell, 2017, 42, 1-2.	7.0	24
14	An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation. ELife, 2016, 5, .	6.0	81
15	Mcp3 is a novel mitochondrial outer membrane protein that follows a unique IMPâ€dependent biogenesis pathway. EMBO Reports, 2016, 17, 965-981.	4.5	31
16	Interaction of MDM33 with mitochondrial inner membrane homeostasis pathways in yeast. Scientific Reports, 2016, 5, 18344.	3.3	20
17	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
18	The mitochondria–plasma membrane contact site. Current Opinion in Cell Biology, 2015, 35, 1-6.	5.4	50

#	Article	lF	CITATIONS
19	ER-mitochondria contacts as sites of mitophagosome formation. Autophagy, 2014, 10, 1346-1347.	9.1	30
20	Mitochondrial ER Contacts Are Crucial for Mitophagy in Yeast. Developmental Cell, 2014, 28, 450-458.	7.0	219
21	Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends in Cell Biology, 2014, 24, 537-545.	7.9	92
22	The small <scp>GTP</scp> ase Arf1 modulates mitochondrial morphology and function. EMBO Journal, 2014, 33, 2659-2675.	7.8	81
23	Mitochondria Are Clamped to Vacuoles for Lipid Transport. Developmental Cell, 2014, 30, 1-2.	7.0	11
24	Mitochondrial inheritance in yeast. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1039-1046.	1.0	69
25	Uniform nomenclature for the mitochondrial contact site and cristae organizing system. Journal of Cell Biology, 2014, 204, 1083-1086.	5.2	219
26	Aim24 and MICOS modulate respiratory function, tafazzin-related cardiolipin modification and mitochondrial architecture. ELife, 2014, 3, e01684.	6.0	64
27	Mitochondrial fusion in Chlamydomonas reinhardtii zygotes. European Journal of Cell Biology, 2013, 92, 80-86.	3.6	14
28	The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. Journal of Cell Science, 2013, 126, 2924-30.	2.0	86
29	Analyzing Membrane Dynamics with Live Cell Fluorescence Microscopy with a Focus on Yeast Mitochondria. Methods in Molecular Biology, 2013, 1033, 275-283.	0.9	7
30	Identification and Functional Expression of the Mitochondrial Pyruvate Carrier. Science, 2012, 337, 93-96.	12.6	588
31	Intramitochondrial Transport of Phosphatidic Acid in Yeast by a Lipid Transfer Protein. Science, 2012, 338, 815-818.	12.6	206
32	Bioenergetic role of mitochondrial fusion and fission. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1833-1838.	1.0	537
33	3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography. PLoS ONE, 2012, 7, e53293.	2.5	40
34	Organelle Dynamics: ER Embraces Mitochondria for Fission. Current Biology, 2011, 21, R922-R924.	3.9	26
35	A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. Journal of Cell Biology, 2011, 195, 323-340.	5.2	402
36	The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. Journal of Cell Biology, 2011, 194, 473-488.	5.2	67

#	Article	IF	CITATIONS
37	Mitochondrial dynamics in yeast cell death and aging. Biochemical Society Transactions, 2011, 39, 1520-1526.	3.4	47
38	Mitochondrial fusion and fission in cell life and death. Nature Reviews Molecular Cell Biology, 2010, 11, 872-884.	37.0	1,615
39	Mdm36 Is a Mitochondrial Fission-promoting Protein in <i>Saccharomyces cerevisiae</i> Biology of the Cell, 2010, 21, 2443-2452.	2.1	48
40	Mitochondrial dynamics in model organisms: What yeasts, worms and flies have taught us about fusion and fission of mitochondria. Seminars in Cell and Developmental Biology, 2010, 21, 542-549.	5.0	86
41	Nitric Oxide Links Mitochondrial Fission to Alzheimer's Disease. Science Signaling, 2009, 2, pe29.	3.6	36
42	Regulation of OPA1 processing and mitochondrial fusion by <i>m</i> -AAA protease isoenzymes and OMA1. Journal of Cell Biology, 2009, 187, 1023-1036.	5.2	500
43	The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. Journal of Cell Biology, 2009, 184, 583-596.	5. 2	265
44	Systematic Analysis of the Twin Cx9C Protein Family. Journal of Molecular Biology, 2009, 393, 356-368.	4.2	153
45	Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biology, 2009, 10, R95.	9.6	166
46	The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in <i>Saccharomyces cerevisiae </i> Journal of Cell Biology, 2008, 181, 119-130.	5.2	104
47	Molecular Machinery of Mitochondrial Fusion and Fission. Journal of Biological Chemistry, 2008, 283, 13501-13505.	3.4	226
48	Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes and Development, 2008, 22, 476-488.	5.9	454
49	Molecular machinery of mitochondrial dynamics in yeast. Biological Chemistry, 2007, 388, 917-926.	2.5	44
50	Preprotein Transport Machineries of Yeast Mitochondrial Outer Membrane Are not Required for Bax-induced Release of Intermembrane Space Proteins. Journal of Molecular Biology, 2007, 368, 44-54.	4.2	34
51	Analysis of Protein–Protein Interactions in Mitochondria. Methods in Cell Biology, 2007, 80, 743-759.	1.1	4
52	Saccharomyces cerevisiae as a Model Organism to Study Mitochondrial Biology. Methods in Molecular Biology, 2007, 372, 81-90.	0.9	39
53	Focus on mitochondria: introducing a new series in Trends in Cell Biology. Trends in Cell Biology, 2007, 17, 417-418.	7.9	1
54	Mitochondrial dynamics in cell life and death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 413.	4.1	0

#	Article	IF	CITATIONS
55	Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. Journal of Cell Biology, 2006, 173, 645-650.	5.2	108
56	Nonredundant Roles of Mitochondria-associated F-Box Proteins Mfb1 and Mdm30 in Maintenance of Mitochondrial Morphology in Yeast. Molecular Biology of the Cell, 2006, 17, 3745-3755.	2.1	66
57	DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature, 2005, 433, 754-760.	27.8	290
58	Role of Unc104/KIF1-related Motor Proteins in Mitochondrial Transport in Neurospora crassa. Molecular Biology of the Cell, 2005, 16, 153-161.	2.1	34
59	Role of Essential Genes in Mitochondrial Morphogenesis inSaccharomyces cerevisiae. Molecular Biology of the Cell, 2005, 16, 5410-5417.	2.1	151
60	Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. Journal of Cell Biology, 2005, 168, 103-115.	5.2	93
61	Mitochondrial membrane fusion. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 195-202.	4.1	48
62	'Omics' of the mitochondrion. Nature Biotechnology, 2003, 21, 239-240.	17.5	39
63	Mdm30 Is an F-Box Protein Required for Maintenance of Fusion-competent Mitochondria in Yeast. Molecular Biology of the Cell, 2003, 14, 2303-2313.	2.1	126
64	Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. Journal of Cell Science, 2003, 116, 2005-2014.	2.0	113
65	The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. Journal of Cell Biology, 2003, 160, 553-564.	5.2	109
66	Genetic Basis of Mitochondrial Function and Morphology in Saccharomyces cerevisiae. Molecular Biology of the Cell, 2002, 13, 847-853.	2.1	408
67	Merging mitochondria matters. EMBO Reports, 2002, 3, 527-531.	4.5	140
68	Protein import into mitochondria of Neurospora crassa. Fungal Genetics and Biology, 2002, 36, 85-90.	2.1	8
69	Mitochondrial dynamics in filamentous fungi. Fungal Genetics and Biology, 2002, 36, 91-97.	2.1	38
70	Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. Journal of Cell Science, 2002, 115, 1931-1937.	2.0	58
71	Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. Journal of Cell Science, 2002, 115, 1931-7.	2.0	41
72	Analysis of mitochondrial translation products in Vivo and in organello in yeast. Methods in Cell Biology, 2001, 65, 429-438.	1.1	32

#	Article	IF	CITATIONS
73	The mitochondrial proteins Ssq1 and Jac1 are required for the assembly of iron sulfur clusters in mitochondrial 1Edited by B. Holland. Journal of Molecular Biology, 2001, 307, 815-825.	4.2	133
74	Connection of the Mitochondrial Outer and Inner Membranes by Fzo1 Is Critical for Organellar Fusion. Journal of Cell Biology, 2001, 152, 683-692.	5. 2	136
75	Analysis of protein-protein interactions in mitochondria by coimmunoprecipitation and chemical cross-linking. Methods in Cell Biology, 2001, 65, 217-230.	1.1	29
76	Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast, 2000, 16, 1421-1427.	1.7	358
77	Snarepins Are Functionally Resistant to Disruption by Nsf and αSNAP. Journal of Cell Biology, 2000, 149, 1063-1072.	5 . 2	113
78	Role of MMM1 in Maintaining Mitochondrial Morphology inNeurospora crassa. Molecular Biology of the Cell, 2000, 11, 2961-2971.	2.1	42
79	Mitochondriaâ€targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast, 2000, 16, 1421-1427.	1.7	4
80	Rapid and efficient fusion of phospholipid vesicles by the alpha -helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12565-12570.	7.1	249
81	Dual Role of the Mitochondrial Chaperone Mdj1p in Inheritance of Mitochondrial DNA in Yeast. Molecular and Cellular Biology, 1999, 19, 8201-8210.	2.3	37
82	SNAREpins: Minimal Machinery for Membrane Fusion. Cell, 1998, 92, 759-772.	28.9	2,289
83	Fzo1p Is a Mitochondrial Outer Membrane Protein Essential for the Biogenesis of Functional Mitochondria in Saccharomyces cerevisiae. Journal of Biological Chemistry, 1998, 273, 20150-20155.	3.4	321
84	Mdj2p, a novel DnaJ homolog in the mitochondrial inner membrane of the yeast Saccharomyces cerevisiae. Journal of Molecular Biology, 1997, 272, 477-483.	4.2	43
85	Role of the mitochondrial DnaJ homologue, Mdj1p, in the prevention of heat-induced protein aggregation. FEBS Letters, 1996, 380, 142-146.	2.8	49
86	Mdj $1p$, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell, 1994, 77, 249-259.	28.9	240
87	XDJ1, a gene encoding a novel non-essential DnaJ homologue from Saccharomyces cerevisiae. Gene, 1994, 145, 121-124.	2.2	17