Jin Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827639/publications.pdf

Version: 2024-02-01

430442 610482 31,371 26 18 24 citations h-index g-index papers 31 31 31 54923 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel ultra-rare exonic variants identified in a founder population implicate cadherins in schizophrenia. Neuron, 2021, 109, 1465-1478.e4.	3.8	21
2	Identifying nootropic drug targets via large-scale cognitive GWAS and transcriptomics. Neuropsychopharmacology, 2021, 46, 1788-1801.	2.8	12
3	Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. American Journal of Human Genetics, 2019, 105, 334-350.	2.6	86
4	Schizophrenia Polygenic Risk Score as a Predictor of Antipsychotic Efficacy in First-Episode Psychosis. American Journal of Psychiatry, 2019, 176, 21-28.	4.0	127
5	High-depth whole genome sequencing of an Ashkenazi Jewish reference panel: enhancing sensitivity, accuracy, and imputation. Human Genetics, 2018, 137, 343-355.	1.8	24
6	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	5.8	484
7	Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nature Genetics, 2018, 50, 912-919.	9.4	893
8	Multi-Trait Analysis of GWAS and Biological Insights Into Cognition: A Response to Hill (2018). Twin Research and Human Genetics, 2018, 21, 394-397.	0.3	3
9	Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Reports, 2017, 21, 2597-2613.	2.9	103
10	Expanded genetic screening panel for the Ashkenazi Jewish population. Genetics in Medicine, 2016, 18, 522-528.	1.1	33
11	A global reference for human genetic variation. Nature, 2015, 526, 68-74.	13.7	13,998
12	Association of a Schizophrenia Risk Variant at the <i>DRD2</i> Locus With Antipsychotic Treatment Response in First-Episode Psychosis. Schizophrenia Bulletin, 2015, 41, 1248-1255.	2.3	64
13	Population Genomic Analysis of 962 Whole Genome Sequences of Humans Reveals Natural Selection in Non-Coding Regions. PLoS ONE, 2015, 10, e0121644.	1.1	13
14	Cloud processing of 1000 genomes sequencing data using Amazon Web Service. , 2013, , .		2
15	An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data. Genome Research, 2013, 23, 833-842.	2.4	93
16	Whole-genome sequence–based analysis of high-density lipoprotein cholesterol. Nature Genetics, 2013, 45, 899-901.	9.4	132
17	Nextâ€generation sequencing study finds an excess of rare, coding singleâ€nucleotide variants of ADAMTS13 in patients with deep vein thrombosis. Journal of Thrombosis and Haemostasis, 2013, 11, 1228-1239.	1.9	52
18	The 1000 Genomes Project: data management and community access. Nature Methods, 2012, 9, 459-462.	9.0	308

#	Article	IF	CITATIONS
19	An integrative variant analysis suite for whole exome next-generation sequencing data. BMC Bioinformatics, 2012, 13, 8.	1.2	252
20	An integrated map of genetic variation from 1,092 human genomes. Nature, 2012, 491, 56-65.	13.7	7,199
21	Atlas2 Cloud: a framework for personal genome analysis in the cloud. BMC Genomics, 2012, 13, S19.	1.2	42
22	Identification of genetic risk variants for deep vein thrombosis by multiplexed next-generation sequencing of 186 hemostatic/pro-inflammatory genes. BMC Medical Genomics, 2012, 5, 7.	0.7	32
23	Rare Coding Single Nucleotide Variants of ADAMTS13 Are Associated with Deep Vein Thrombosis in a Next-Generation Sequencing Association Study. Blood, 2012, 120, 107-107.	0.6	0
24	The functional spectrum of low-frequency coding variation. Genome Biology, 2011, 12, R84.	13.9	173
25	Identification of DEEP Vein Thrombosis GENETIC RISK Variants by NEXT GENERATION Sequencing of Hemostatic Genes. Blood, 2011, 118, 710-710.	0.6	0
26	A map of human genome variation from population-scale sequencing. Nature, 2010, 467, 1061-1073.	13.7	7,209