
Christian Beste

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827274/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurobiological mechanisms of control in alcohol use disorder – Moving towards mechanism-based non-invasive brain stimulation treatments. Neuroscience and Biobehavioral Reviews, 2022, 133, 104508.	2.9	5
2	A role of the norepinephrine system or effort in the interplay of different facets of inhibitory control. Neuropsychologia, 2022, 166, 108143.	0.7	7
3	Superior frontal regions reflect the dynamics of task engagement and theta band-related control processes in time-on task effects. Scientific Reports, 2022, 12, 846.	1.6	2
4	Auricular Transcutaneous Vagus Nerve Stimulation Diminishes Alpha-Band–Related Inhibitory Gating Processes During Conflict Monitoring in Frontal Cortices. International Journal of Neuropsychopharmacology, 2022, 25, 457-467.	1.0	8
5	Time-On-Task Effects on Working Memory Gating Processes—A Role of Theta Synchronization and the Norepinephrine System. Cerebral Cortex Communications, 2022, 3, tgac001.	0.7	6
6	How low working memory demands and reduced anticipatory attentional gating contribute to impaired inhibition during acute alcohol intoxication. Scientific Reports, 2022, 12, 2892.	1.6	0
7	Conditional generative adversarial networks applied to EEG data can inform about the inter-relation of antagonistic behaviors on a neural level. Communications Biology, 2022, 5, 148.	2.0	7
8	Resting-state theta activity is linked to information content-specific coding levels during response inhibition. Scientific Reports, 2022, 12, 4530.	1.6	5
9	Focusing on cognitive potential as the bright side of mental atypicality. Communications Biology, 2022, 5, 188.	2.0	5
10	Alpha and Theta Bands Dynamics Serve Distinct Functions during Perception–Action Integration in Response Inhibition. Journal of Cognitive Neuroscience, 2022, 34, 1053-1069.	1.1	14
11	The metacontrol hypothesis as diagnostic framework of OCD and ADHD: A dimensional approach based on shared neurobiological vulnerability. Neuroscience and Biobehavioral Reviews, 2022, 137, 104677.	2.9	2
12	On the Role of Memory Representations in Action Control: Neurophysiological Decoding Reveals the Reactivation of Integrated Stimulus–Response Feature Representations. Journal of Cognitive Neuroscience, 2022, 34, 1246-1258.	1.1	6
13	Pre-trial fronto-occipital electrophysiological connectivity affects perception–action integration in response inhibition. Cortex, 2022, 152, 122-135.	1.1	10
14	Protocol to decode representations from EEG data with intermixed signals using temporal signal decomposition and multivariate pattern-analysis. STAR Protocols, 2022, 3, 101399.	0.5	3
15	Auricular transcutaneous vagus nerve stimulation for alcohol use disorder: A chance to improve treatment?. Addiction Biology, 2022, 27, .	1.4	3
16	The Downsides of Cognitive Enhancement. Neuroscientist, 2021, 27, 107385842094597.	2.6	29
17	A novel approach to intra-individual performance variability in ADHD. European Child and Adolescent Psychiatry, 2021, 30, 733-745.	2.8	10
18	Resting-state EEG Dynamics Reveals Differences in Network Organization and its Fluctuation between Frequency Bands. Neuroscience, 2021, 453, 43-56.	1.1	8

#	Article	IF	CITATIONS
19	Neurophysiological mechanisms underlying motor feature binding processes and representations. Human Brain Mapping, 2021, 42, 1313-1327.	1.9	21
20	Automatic aspects of response selection remain unchanged during highâ€dose alcohol intoxication. Addiction Biology, 2021, 26, e12852.	1.4	4
21	Cognitive profile in Restless Legs Syndrome: A signal-to-noise ratio account. Current Research in Neurobiology, 2021, 2, 100021.	1.1	1
22	Pushing to the Limits: What Processes during Cognitive Control are Enhanced by Reaction–Time Feedback?. Cerebral Cortex Communications, 2021, 2, tgab027.	0.7	0
23	On the functional role of striatal and anterior cingulate GABA + in stimulusâ€response binding. Human Brain Mapping, 2021, 42, 1863-1878.	1.9	9
24	The dynamics of theta-related pro-active control and response inhibition processes in AD(H)D. NeuroImage: Clinical, 2021, 30, 102609.	1.4	7
25	Feedback-Based Learning of Timing in Attention-Deficit/Hyperactivity Disorder and Neurofibromatosis Type 1. Journal of the International Neuropsychological Society, 2021, , 1-10.	1.2	2
26	Short-term Focused Attention Meditation Restricts the Retrieval of Stimulus-Response Bindings to Relevant Information. Mindfulness, 2021, 12, 1272-1281.	1.6	8
27	Perception-Action Integration Is Modulated by the Catecholaminergic System Depending on Learning Experience. International Journal of Neuropsychopharmacology, 2021, 24, 592-600.	1.0	5
28	Anodal tDCS modulates specific processing codes during conflict monitoring associated with superior and middle frontal cortices. Brain Structure and Function, 2021, 226, 1335-1351.	1.2	4
29	#EEGManyLabs: Investigating the replicability of influential EEG experiments. Cortex, 2021, 144, 213-229.	1.1	52
30	Networks in the Field of Tourette Syndrome. Frontiers in Neurology, 2021, 12, 624858.	1.1	5
31	Affective Dysregulation in Children Is Associated With Difficulties in Response Control in Emotional Ambiguous Situations. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 7, 66-66.	1.1	3
32	Neurophysiology of embedded response plans: age effects in action execution but not in feature integration from preadolescence to adulthood. Journal of Neurophysiology, 2021, 125, 1382-1395.	0.9	8
33	Neurophysiological and functional neuroanatomical coding of statistical and deterministic rule information during sequence learning. Human Brain Mapping, 2021, 42, 3182-3201.	1.9	13
34	Task Switching and the Role of Motor Reprogramming in Parietal Structures. Neuroscience, 2021, 461, 23-35.	1.1	5
35	The interplay of resting and inhibitory controlâ€related thetaâ€band activity depends on age. Human Brain Mapping, 2021, 42, 3845-3857.	1.9	8
36	Acute alcohol intoxication modulates the temporal dynamics of resting electroencephalography networks. Addiction Biology, 2021, 26, e13034.	1.4	12

#	Article	IF	CITATIONS
37	Somatosensory perception–action binding in Tourette syndrome. Scientific Reports, 2021, 11, 13388.	1.6	5
38	Alcohol intoxication, but not hangover, differentially impairs learning and automatization of complex motor response sequences. Scientific Reports, 2021, 11, 12539.	1.6	2
39	A distinct electrophysiological signature for synaesthesia that is independent of individual differences in sensory sensitivity. Cortex, 2021, 139, 249-266.	1.1	2
40	Dissociating direct and indirect effects: a theoretical framework of how latent toxoplasmosis affects cognitive profile across the lifespan. Neurobiology of Aging, 2021, 102, 119-128.	1.5	5
41	An Oppositional Tolerance Account for Potential Cognitive Deficits Caused by the Discontinuation of Antidepressant Drugs. Pharmacopsychiatry, 2021, 54, 252-260.	1.7	0
42	Taming the chaos?! Using eXplainable Artificial Intelligence (XAI) to tackle the complexity in mental health research. European Child and Adolescent Psychiatry, 2021, 30, 1143-1146.	2.8	14
43	Swearing and coprophenomena – A multidimensional approach. Neuroscience and Biobehavioral Reviews, 2021, 126, 12-22.	2.9	8
44	Lowerâ€level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. European Journal of Neuroscience, 2021, 54, 5143-5160.	1.2	7
45	Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility. Journal of Neurophysiology, 2021, 126, 383-397.	0.9	7
46	Neural dynamics of stimulus-response representations during inhibitory control. Journal of Neurophysiology, 2021, 126, 680-692.	0.9	20
47	Perception-action integration in young age—A cross-sectional EEG study. Developmental Cognitive Neuroscience, 2021, 50, 100977.	1.9	10
48	Distinct Brain-Oscillatory Neuroanatomical Architecture of Perception-Action Integration in Adolescents With Tourette Syndrome. Biological Psychiatry Global Open Science, 2021, 1, 123-134.	1.0	8
49	Pandemic Ticâ€like Behaviors Following Social Media Consumption. Movement Disorders, 2021, 36, 2932-2935.	2.2	51
50	A hierarchical processing unit for multi-component behavior in the avian brain. IScience, 2021, 24, 103195.	1.9	5
51	Disconnected psychology and neuroscience—implications for scientific progress, replicability and the role of publishing. Communications Biology, 2021, 4, 1099.	2.0	6
52	Inter-individual differences in urge-tic associations in Tourette syndrome. Cortex, 2021, 143, 80-91.	1.1	18
53	A neural noise account of Gilles de la Tourette syndrome. NeuroImage: Clinical, 2021, 30, 102654.	1.4	8
54	Tourette syndrome as a motor disorder revisited – Evidence from action coding. Neurolmage: Clinical, 2021, 30, 102611.	1.4	12

#	Article	IF	CITATIONS
55	Increased scale-free and aperiodic neural activity during sensorimotor integration—a novel facet in Tourette syndrome. Brain Communications, 2021, 3, fcab250.	1.5	11
56	Towards an Ideology-Free, Truly Mechanistic Health Psychology. International Journal of Environmental Research and Public Health, 2021, 18, 11126.	1.2	3
57	Distinguishing Multiple Coding Levels in Theta Band Activity During Working Memory Gating Processes. Neuroscience, 2021, 478, 11-23.	1.1	10
58	Multi-level decoding of task sets in neurophysiological data during cognitive flexibility. IScience, 2021, 24, 103502.	1.9	14
59	Questioning the definition of Tourette syndrome—evidence from machine learning. Brain Communications, 2021, 3, fcab282.	1.5	6
60	How highâ€dose alcohol intoxication affects the interplay of automatic and controlled processes. Addiction Biology, 2020, 25, e12700.	1.4	17
61	Dopamine D1, but not D2, signaling protects mental representations from distracting bottom-up influences. NeuroImage, 2020, 204, 116243.	2.1	9
62	Highâ€dose ethanol intoxication decreases 1/f neural noise or scaleâ€free neural activity in the resting state. Addiction Biology, 2020, 25, e12818.	1.4	9
63	Learning Experience Reverses Catecholaminergic Effects on Adaptive Behavior. International Journal of Neuropsychopharmacology, 2020, 23, 12-19.	1.0	11
64	Passive perceptual learning modulates motor inhibitory control in superior frontal regions. Human Brain Mapping, 2020, 41, 726-738.	1.9	7
65	Addiction Research Consortium: Losing and regaining control over drug intake (ReCoDe)—From trajectories to mechanisms and interventions. Addiction Biology, 2020, 25, e12866.	1.4	135
66	Editorial: The Global Methamphetamine Problem: Approaches to Elucidate the Neurobiology, Epidemiology, and Therapeutic Effectiveness. Frontiers in Psychiatry, 2020, 11, 850.	1.3	4
67	Cardiac cycle gated cognitive-emotional control in superior frontal cortices. NeuroImage, 2020, 222, 117275.	2.1	20
68	Evidence for a causal role of superior frontal cortex theta oscillations during the processing of joint subliminal and conscious conflicts. Cortex, 2020, 132, 15-28.	1.1	13
69	Non-invasive Brain Stimulation for the Treatment of Gilles de la Tourette Syndrome. Frontiers in Neurology, 2020, 11, 592258.	1.1	17
70	Gilles de la Tourette Syndrome—A Disorder of Action-Perception Integration. Frontiers in Neurology, 2020, 11, 597898.	1.1	20
71	A large-scale estimate on the relationship between language and motor lateralization. Scientific Reports, 2020, 10, 13027.	1.6	23
72	Why Cognitive–Cognitive Dual-Task Testing Assessment Should Be Implemented in Studies on Multiple Sclerosis and in Regular Clinical Practice. Frontiers in Neurology, 2020, 11, 905.	1.1	3

#	Article	IF	CITATIONS
73	Resting theta activity is associated with specific coding levels in eventâ€related theta activity during conflict monitoring. Human Brain Mapping, 2020, 41, 5114-5127.	1.9	19
74	Neurophysiological correlates of perception–action binding in the somatosensory system. Scientific Reports, 2020, 10, 14794.	1.6	8
75	On the Reliability of Examining Dual-Tasking Abilities Using a Novel E-Health Device—A Proof of Concept Study in Multiple Sclerosis. Journal of Clinical Medicine, 2020, 9, 3423.	1.0	1
76	Alcohol Hangover Does Not Alter the Application of Model-Based and Model-Free Learning Strategies. Journal of Clinical Medicine, 2020, 9, 1453.	1.0	2
77	Short-term Smartphone App–Based Focused Attention Meditation Diminishes Cognitive Flexibility. Journal of Cognitive Neuroscience, 2020, 32, 1484-1496.	1.1	10
78	Task experience eliminates catecholaminergic effects on inhibitory control – A randomized, double-blind cross-over neurophysiological study. European Neuropsychopharmacology, 2020, 35, 89-99.	0.3	11
79	Increased perception-action binding in Tourette syndrome. Brain, 2020, 143, 1934-1945.	3.7	65
80	Decoding Stimulus–Response Representations and Their Stability Using EEG-Based Multivariate Pattern Analysis. Cerebral Cortex Communications, 2020, 1, tgaa016.	0.7	48
81	Pre-trial theta band activity in the ventromedial prefrontal cortex correlates with inhibition-related theta band activity in the right inferior frontal cortex. NeuroImage, 2020, 219, 117052.	2.1	39
82	Alcohol Hangover Differentially Modulates the Processing of Relevant and Irrelevant Information. Journal of Clinical Medicine, 2020, 9, 778.	1.0	4
83	Connecting EEG signal decomposition and response selection processes using the theory of event coding framework. Human Brain Mapping, 2020, 41, 2862-2877.	1.9	70
84	Low and high stimulation frequencies differentially affect automated response selection in the superior parietal cortex – implications for somatosensory area processes. Scientific Reports, 2020, 10, 3954.	1.6	3
85	A literature review on the neurophysiological underpinnings and cognitive effects of transcutaneous vagus nerve stimulation: challenges and future directions. Journal of Neurophysiology, 2020, 123, 1739-1755.	0.9	52
86	Applying deep learning to single-trial EEG data provides evidence for complementary theories on action control. Communications Biology, 2020, 3, 112.	2.0	58
87	EEG Signal Decomposition Evidence for a Role of Perceptual Processes during Conflict-related Behavioral Adjustments in Middle Frontal Regions. Journal of Cognitive Neuroscience, 2020, 32, 1381-1393.	1.1	4
88	Neurofeedback trains a superordinate system relevant for seemingly opposing behavioral control deficits depending on ADHD subtype. Developmental Science, 2020, 23, e12956.	1.3	9
89	Inflexible adjustment of expectations affects cognitive-emotional conflict control in adolescents with autism spectrum disorder. Cortex, 2020, 130, 231-245.	1.1	9
90	Properties of lower level processing modulate the actions of the norepinephrine system during response inhibition. Biological Psychology, 2020, 152, 107862.	1.1	4

#	Article	IF	CITATIONS
91	Immediate early gene fingerprints of multi-component behaviour. Scientific Reports, 2020, 10, 384.	1.6	7
92	Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. Journal of Clinical Medicine, 2020, 9, 481.	1.0	13
93	Comprehensive Behavioral Intervention for Tics reduces perception-action binding during inhibitory control in Gilles de la Tourette syndrome. Scientific Reports, 2020, 10, 1174.	1.6	28
94	Intact Stimulus–Response Conflict Processing in ADHD—Multilevel Evidence and Theoretical Implications. Journal of Clinical Medicine, 2020, 9, 234.	1.0	3
95	A possible role of the norepinephrine system during sequential cognitive flexibility – Evidence from EEG and pupil diameter data. Cortex, 2020, 128, 22-34.	1.1	10
96	Anodal transcranial direct current stimulation enhances the efficiency of functional brain network communication during auditory attentional control. Journal of Neurophysiology, 2020, 124, 207-217.	0.9	1
97	International Consensus Based Review and Recommendations for Minimum Reporting Standards in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 2020, 14, 568051.	1.0	143
98	Using temporal EEG signal decomposition to identify specific neurophysiological correlates of distractor-response bindings proposed by the theory of event coding. NeuroImage, 2020, 209, 116524.	2.1	49
99	Neurofilament light chain in serum is significantly increased in chorea-acanthocytosis. Parkinsonism and Related Disorders, 2020, 80, 28-31.	1.1	6
100	Electro-Myo-Stimulation Induced Tic Exacerbation – Increased Tendencies for the Formation of Perception-Action Links in Tourette Syndrome. Tremor and Other Hyperkinetic Movements, 2020, 10, 41.	1.1	8
101	Altered perceptionâ€action binding modulates inhibitory control in Gilles de la Tourette syndrome. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2019, 60, 953-962.	3.1	46
102	Methamphetamine-associated difficulties in cognitive control allocation may normalize after prolonged abstinence. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 88, 41-52.	2.5	26
103	Validity expectancies shape the interplay of cueing and task demands during inhibitory control associated with right inferior frontal regions. Brain Structure and Function, 2019, 224, 1911-1924.	1.2	5
104	Genetic variation in dopamine availability modulates the self-reported level of action control in a sex-dependent manner. Social Cognitive and Affective Neuroscience, 2019, 14, 759-768.	1.5	3
105	Effects of aging on sequential cognitive flexibility are associated with fronto-parietal processing deficits. Brain Structure and Function, 2019, 224, 2343-2355.	1.2	19
106	The Role of DRD1 and DRD2 Receptors for Response Selection Under Varying Complexity Levels: Implications for Metacontrol Processes. International Journal of Neuropsychopharmacology, 2019, 22, 747-753.	1.0	8
107	Deep Learning Based on Event-Related EEG Differentiates Children with ADHD from Healthy Controls. Journal of Clinical Medicine, 2019, 8, 1055.	1.0	70
108	Paradoxical response inhibition advantages in adolescent obsessive compulsive disorder result from the interplay of automatic and controlled processes. NeuroImage: Clinical, 2019, 23, 101893.	1.4	10

#	Article	IF	CITATIONS
109	Thalamic GABA may modulate cognitive control in restless legs syndrome. Neuroscience Letters, 2019, 712, 134494.	1.0	8
110	Predictive coding and adaptive behavior in patients with genetically determined cerebellar ataxia––A neurophysiology study. NeuroImage: Clinical, 2019, 24, 102043.	1.4	7
111	How non-veridical perception drives actions in healthy humans: evidence from synaesthesia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180574.	1.8	4
112	Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. Journal of Clinical Medicine, 2019, 8, 1317.	1.0	12
113	Anodal tDCS affects neuromodulatory effects of the norepinephrine system on superior frontal theta activity during response inhibition. Brain Structure and Function, 2019, 224, 1291-1300.	1.2	35
114	Lateral prefrontal anodal transcranial direct current stimulation augments resolution of auditory perceptual-attentional conflicts. NeuroImage, 2019, 199, 217-227.	2.1	12
115	On the relevance of EEG resting theta activity for the neurophysiological dynamics underlying motor inhibitory control. Human Brain Mapping, 2019, 40, 4253-4265.	1.9	35
116	The impact of stimulus modality on the processing of conflicting sensory information during response inhibition. Neuroscience, 2019, 410, 191-201.	1.1	5
117	How perceptual ambiguity affects response inhibition processes. Journal of Neurophysiology, 2019, 122, 500-511.	0.9	9
118	The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Molecular Neurobiology, 2019, 56, 8087-8100.	1.9	10
119	How the depth of processing modulates emotional interference – evidence from EEG and pupil diameter data. Cognitive, Affective and Behavioral Neuroscience, 2019, 19, 1231-1246.	1.0	9
120	Structural Asymmetry in the Frontal and Temporal Lobes Is Associated with PCSK6 VNTR Polymorphism. Molecular Neurobiology, 2019, 56, 7765-7773.	1.9	4
121	Stimulus Feature Conflicts Enhance Motor Inhibitory Control Processes in the Lateral Prefrontal Cortex. Journal of Cognitive Neuroscience, 2019, 31, 1430-1442.	1.1	15
122	Catecholaminergic effects on inhibitory control depend on the interplay of prior task experience and working memory demands. Journal of Psychopharmacology, 2019, 33, 678-687.	2.0	23
123	On the interrelation of 1/ <i>f</i> neural noise and norepinephrine system activity during motor response inhibition. Journal of Neurophysiology, 2019, 121, 1633-1643.	0.9	30
124	CHRM2 Genotype Affects Inhibitory Control Mechanisms During Cognitive Flexibility. Molecular Neurobiology, 2019, 56, 6134-6141.	1.9	6
125	The Intensity of Early Attentional Processing, but Not Conflict Monitoring, Determines the Size of Subliminal Response Conflicts. Frontiers in Human Neuroscience, 2019, 13, 53.	1.0	5
126	Neuronal networks underlying the conjoint modulation of response selection by subliminal and consciously induced cognitive conflicts. Brain Structure and Function, 2019, 224, 1697-1709.	1.2	12

#	Article	IF	CITATIONS
127	Numbers in action during cognitive flexibility – A neurophysiological approach on numerical operations underlying task switching. Cortex, 2019, 120, 101-115.	1.1	7
128	The Modulation of Neural Noise Underlies the Effectiveness of Methylphenidate Treatment in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 743-750.	1.1	30
129	Stimulus-response recoding during inhibitory control is associated with superior frontal and parahippocampal processes. NeuroImage, 2019, 196, 227-236.	2.1	29
130	Young frequent binge drinkers show no behavioral deficits in inhibitory control and cognitive flexibility. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 93, 93-101.	2.5	2
131	Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Developmental Cognitive Neuroscience, 2019, 36, 100623.	1.9	20
132	Methamphetamine Users Show No Behavioral Deficits in Response Selection After Protracted Abstinence. Frontiers in Psychiatry, 2019, 10, 823.	1.3	4
133	Detrimental effects of a high-dose alcohol intoxication on sequential cognitive flexibility are attenuated by practice. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2019, 89, 97-108.	2.5	12
134	Apolipoprotein Îμ4 is associated with better cognitive control allocation in healthy young adults. NeuroImage, 2019, 185, 274-285.	2.1	12
135	How minimal variations in neuronal cytoskeletal integrity modulate cognitive control. NeuroImage, 2019, 185, 129-139.	2.1	25
136	The neurophysiological basis of developmental changes during sequential cognitive flexibility between adolescents and adults. Human Brain Mapping, 2019, 40, 552-565.	1.9	17
137	Physical intensity of stimuli modulates motor inhibition by affecting response selection processes in right inferior frontal regions. Behavioural Brain Research, 2019, 359, 597-608.	1.2	2
138	Myelin Water Fraction Imaging Reveals Hemispheric Asymmetries in Human White Matter That Are Associated with Genetic Variation in PLP1. Molecular Neurobiology, 2019, 56, 3999-4012.	1.9	14
139	Gilles de la Tourette Syndrome. Zeitschrift Für Neuropsychologie = Journal of Neuropsychology, 2019, 30, 215-221.	0.2	4
140	Differences in response inhibition processes between adolescents and adults are modulated by sensory processes. Developmental Cognitive Neuroscience, 2018, 31, 35-45.	1.9	10
141	Dopamine Modulates the Efficiency of Sensory Evidence Accumulation During Perceptual Decision Making. International Journal of Neuropsychopharmacology, 2018, 21, 649-655.	1.0	39
142	When repetitive mental sets increase cognitive flexibility in adolescent obsessive–compulsive disorder. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2018, 59, 1024-1032.	3.1	22
143	Neurophysiological mechanisms of interval timing dissociate inattentive and combined ADHD subtypes. Scientific Reports, 2018, 8, 2033.	1.6	23
144	PLP1 Gene Variation Modulates Leftward and Rightward Functional Hemispheric Asymmetries. Molecular Neurobiology, 2018, 55, 7691-7700.	1.9	7

#	Article	IF	CITATIONS
145	Response selection codes in neurophysiological data predict conjoint effects of controlled and automatic processes during response inhibition. Human Brain Mapping, 2018, 39, 1839-1849.	1.9	55
146	Tics and Tourette syndrome — surplus of actions rather than disorder?. Movement Disorders, 2018, 33, 238-242.	2.2	52
147	On the role of the prefrontal cortex in fatigue effects on cognitive flexibility - a system neurophysiological approach. Scientific Reports, 2018, 8, 6395.	1.6	19
148	Neural mechanisms underlying successful and deficient multi-component behavior in early adolescent ADHD. NeuroImage: Clinical, 2018, 18, 533-542.	1.4	11
149	Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts. NeuroImage, 2018, 174, 11-21.	2.1	16
150	Effects of highâ€dose ethanol intoxication and hangover on cognitive flexibility. Addiction Biology, 2018, 23, 503-514.	1.4	30
151	Neural correlates of prediction violations in boys with Tourette syndrome: Evidence from harmonic expectancy. World Journal of Biological Psychiatry, 2018, 19, 130-141.	1.3	6
152	The Basal Ganglia Striosomes Affect the Modulation of Conflicts by Subliminal Information—Evidence from X-Linked Dystonia Parkinsonism. Cerebral Cortex, 2018, 28, 2243-2252.	1.6	29
153	Working memory load affects repetitive behaviour but not cognitive flexibility in adolescent autism spectrum disorder. World Journal of Biological Psychiatry, 2018, 19, 509-520.	1.3	4
154	Cognitive Control Processes and Functional Cerebral Asymmetries: Association with Variation in the Handedness-Associated Gene LRRTM1. Molecular Neurobiology, 2018, 55, 2268-2274.	1.9	8
155	The role of phasic norepinephrine modulations during task switching: evidence for specific effects in parietal areas. Brain Structure and Function, 2018, 223, 925-940.	1.2	33
156	Specific properties of the SI and SII somatosensory areas and their effects on motor control: a system neurophysiological study. Brain Structure and Function, 2018, 223, 687-699.	1.2	16
157	RLS patients show better nocturnal performance in the Simon task due to diminished visuo-motor priming. Clinical Neurophysiology, 2018, 129, 112-121.	0.7	9
158	Machine learning provides novel neurophysiological features that predict performance to inhibit automated responses. Scientific Reports, 2018, 8, 16235.	1.6	27
159	Paradoxical, causal effects of sensory gain modulation on motor inhibitory control – a tDCS, EEC-source localization study. Scientific Reports, 2018, 8, 17486.	1.6	13
160	On the Neurophysiological Mechanisms Underlying the Adaptability to Varying Cognitive Control Demands. Frontiers in Human Neuroscience, 2018, 12, 411.	1.0	5
161	A comparative study on the neurophysiological mechanisms underlying effects of methylphenidate and neurofeedback on inhibitory control in attention deficit hyperactivity disorder. NeuroImage: Clinical, 2018, 20, 1191-1203.	1.4	25
162	Alcohol Hangover Increases Conflict Load via Faster Processing of Subliminal Information. Frontiers in Human Neuroscience, 2018, 12, 316.	1.0	9

#	Article	IF	CITATIONS
163	Effects of multisensory stimuli on inhibitory control in adolescent ADHD: It is the content of information that matters. NeuroImage: Clinical, 2018, 19, 527-537.	1.4	17
164	Executive Function Deficits in Seriously III Children—Emerging Challenges and Possibilities for Clinical Care. Frontiers in Pediatrics, 2018, 6, 92.	0.9	1
165	Dual-Tasking in Multiple Sclerosis – Implications for a Cognitive Screening Instrument. Frontiers in Human Neuroscience, 2018, 12, 24.	1.0	13
166	Striatal Microstructure and Its Relevance for Cognitive Control. Trends in Cognitive Sciences, 2018, 22, 747-751.	4.0	35
167	On the effects of tyrosine supplementation on interference control in a randomized, double-blind placebo-control trial. European Neuropsychopharmacology, 2018, 28, 933-944.	0.3	8
168	Catecholaminergic Modulation of Conflict Control Depends on the Source of Conflicts. International Journal of Neuropsychopharmacology, 2018, 21, 901-909.	1.0	31
169	Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Science Advances, 2018, 4, eaar6830.	4.7	56
170	How socioemotional setting modulates late-stage conflict resolution processes in the lateral prefrontal cortex. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 521-535.	1.0	12
171	Associative plasticity in supplementary motor area - motor cortex pathways in Tourette syndrome. Scientific Reports, 2018, 8, 11984.	1.6	14
172	PLP1 and CNTN1 gene variation modulates the microstructure of human white matter in the corpus callosum. Brain Structure and Function, 2018, 223, 3875-3887.	1.2	10
173	The systemâ€neurophysiological basis for how methylphenidate modulates perceptual–attentional conflicts during auditory processing. Human Brain Mapping, 2018, 39, 5050-5061.	1.9	35
174	Evidence for a neural dual-process account for adverse effects of cognitive control. Brain Structure and Function, 2018, 223, 3347-3363.	1.2	15
175	Effects of binge drinking and hangover on response selection sub-processes-a study using EEG and drift diffusion modeling. Addiction Biology, 2017, 22, 1355-1365.	1.4	19
176	Reversal of alcoholâ€induced effects on response control due to changes in proprioceptive information processing. Addiction Biology, 2017, 22, 246-256.	1.4	5
177	Striosomal dysfunction affects behavioral adaptation but not impulsivity—Evidence from Xâ€linked dystoniaâ€parkinsonism. Movement Disorders, 2017, 32, 576-584.	2.2	37
178	The norepinephrine system shows information-content specific properties during cognitive control – Evidence from EEG and pupillary responses. NeuroImage, 2017, 149, 44-52.	2.1	104
179	Are multitasking abilities impaired in welders exposed to manganese? Translating cognitive neuroscience to neurotoxicology. Archives of Toxicology, 2017, 91, 2865-2877.	1.9	8
180	Response inhibition in Attention deficit disorder and neurofibromatosis type 1 – clinically similar, neurophysiologically different. Scientific Reports, 2017, 7, 43929.	1.6	9

#	Article	IF	CITATIONS
181	Darwin revisited: The vagus nerve is a causal element in controlling recognition of other's emotions. Cortex, 2017, 92, 95-102.	1.1	54
182	Dysfunctions in striatal microstructure can enhance perceptual decision making through deficits in predictive coding. Brain Structure and Function, 2017, 222, 3807-3817.	1.2	12
183	Modulations of cognitive flexibility in obsessive compulsive disorder reflect dysfunctions of perceptual categorization. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2017, 58, 939-949.	3.1	18
184	On the necessity of translational cognitive-neurotoxicological research in methamphetamine abuse and addiction. Archives of Toxicology, 2017, 91, 2707-2709.	1.9	2
185	Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls – Two pathways to success. Neurolmage: Clinical, 2017, 14, 499-505.	1.4	18
186	On the dependence of response inhibition processes on sensory modality. Human Brain Mapping, 2017, 38, 1941-1951.	1.9	41
187	On the relevance of the alpha frequency oscillation's small-world network architecture for cognitive flexibility. Scientific Reports, 2017, 7, 13910.	1.6	27
188	Callosal microstructure affects the timing of electrophysiological left-right differences. NeuroImage, 2017, 163, 310-318.	2.1	19
189	Humans with latent toxoplasmosis display altered reward modulation of cognitive control. Scientific Reports, 2017, 7, 10170.	1.6	30
190	Evidence for enhanced multi-component behaviour in Tourette syndrome – an EEG study. Scientific Reports, 2017, 7, 7722.	1.6	19
191	Opposite effects of binge drinking on consciously vs. subliminally induced cognitive conflicts. NeuroImage, 2017, 162, 117-126.	2.1	24
192	Sensory processes modulate differences in multi omponent behavior and cognitive control between childhood and adulthood. Human Brain Mapping, 2017, 38, 4933-4945.	1.9	9
193	On the effects of multimodal information integration in multitasking. Scientific Reports, 2017, 7, 4927.	1.6	46
194	Neural mechanisms and functional neuroanatomical networks during memory and cue-based task switching as revealed by residue iteration decomposition (RIDE) based source localization. Brain Structure and Function, 2017, 222, 3819-3831.	1.2	62
195	Distinguishing stimulus and response codes in theta oscillations in prefrontal areas during inhibitory control of automated responses. Human Brain Mapping, 2017, 38, 5681-5690.	1.9	82
196	Neurophysiological variability masks differences in functional neuroanatomical networks and their effectiveness to modulate response inhibition between children and adults. Brain Structure and Function, 2017, 223, 1797-1810.	1.2	16
197	Specific neurophysiological mechanisms underlie cognitive inflexibility in inflammatory bowel disease. Scientific Reports, 2017, 7, 13943.	1.6	17
198	Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry – Implications for the norepinephrine system during inhibitory control. NeuroImage, 2017, 157, 575-585.	2.1	85

#	Article	IF	CITATIONS
199	Blocking effects in non-conditioned goal-directed behaviour. Brain Structure and Function, 2017, 222, 2807-2818.	1.2	10
200	Neurophysiological mechanisms of circadian cognitive control in RLS patients - an EEG source localization study. NeuroImage: Clinical, 2017, 15, 644-652.	1.4	20
201	Somatosensory lateral inhibition processes modulate motor response inhibition - an EEG source localization study. Scientific Reports, 2017, 7, 4454.	1.6	10
202	Myelin Genes and the Corpus Callosum: Proteolipid Protein 1 (PLP1) and Contactin 1 (CNTN1) Gene Variation Modulates Interhemispheric Integration. Molecular Neurobiology, 2017, 54, 7908-7916.	1.9	7
203	Testing interactive effects of automatic and conflict control processes during response inhibition – A system neurophysiological study. NeuroImage, 2017, 146, 1149-1156.	2.1	47
204	The norepinephrine system affects specific neurophysiological subprocesses in the modulation of inhibitory control by working memory demands. Human Brain Mapping, 2017, 38, 68-81.	1.9	61
205	The norepinephrine system and its relevance for multi-component behavior. NeuroImage, 2017, 146, 1062-1070.	2.1	43
206	Neuronal Intra-Individual Variability Masks Response Selection Differences between ADHD Subtypes—A Need to Change Perspectives. Frontiers in Human Neuroscience, 2017, 11, 329.	1.0	40
207	Self-Regulatory Capacities Are Depleted in a Domain-Specific Manner. Frontiers in Systems Neuroscience, 2017, 11, 70.	1.2	9
208	Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Archives of Toxicology, 2017, 91, 3373-3384.	1.9	18
209	Questioning the role of the frontopolar cortex in multi-component behavior – a TMS/EEG study. Scientific Reports, 2016, 6, 22317.	1.6	27
210	The impact of simulated MRI scanner background noise on visual attention processes as measured by the EEG. Scientific Reports, 2016, 6, 28371.	1.6	7
211	Improvements of sensorimotor processes during action cascading associated with changes in sensory processing architecture–insights from sensory deprivation. Scientific Reports, 2016, 6, 28259.	1.6	12
212	Perceptual conflict during sensorimotor integration processes - a neurophysiological study in response inhibition. Scientific Reports, 2016, 6, 26289.	1.6	20
213	Single-subject prediction of response inhibition behavior by event-related potentials. Journal of Neurophysiology, 2016, 115, 1252-1262.	0.9	43
214	The system neurophysiological basis of backward inhibition. Brain Structure and Function, 2016, 221, 4575-4587.	1.2	42
215	A systems neurophysiology approach to voluntary event coding. NeuroImage, 2016, 135, 324-332.	2.1	64
216	The system neurophysiological basis of nonâ€adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions. Human Brain Mapping, 2016, 37, 4511-4522.	1.9	27

#	Article	IF	CITATIONS
217	Altered perceptual binding in Gilles de la Tourette syndrome. Cortex, 2016, 83, 160-166.	1.1	27
218	Highâ€dose alcohol intoxication differentially modulates cognitive subprocesses involved in response inhibition. Addiction Biology, 2016, 21, 136-145.	1.4	34
219	Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control – A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimulation, 2016, 9, 811-818.	0.7	92
220	Behavioral and neurophysiological evidence for increased cognitive flexibility in late childhood. Scientific Reports, 2016, 6, 28954.	1.6	22
221	The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback. Scientific Reports, 2016, 6, 31178.	1.6	50
222	Subliminally and consciously induced cognitive conflicts interact at several processing levels. Cortex, 2016, 85, 75-89.	1.1	31
223	The neurophysiological basis of reward effects on backward inhibition processes. NeuroImage, 2016, 142, 163-171.	2.1	29
224	Effects of l-Tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex, 2016, 82, 217-224.	1.1	27
225	Deep brain stimulation in the globus pallidus compensates response inhibition deficits: evidence from pantothenate kinase-associated neurodegeneration. Brain Structure and Function, 2016, 221, 2251-2257.	1.2	8
226	Neural correlates of altered sensorimotor gating in boys with Tourette Syndrome: A combined EMG/fMRI study. World Journal of Biological Psychiatry, 2016, 17, 187-197.	1.3	59
227	Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. European Neuropsychopharmacology, 2016, 26, 1029-1036.	0.3	36
228	Editorial Perspective: How to optimise frequency band neurofeedback for <scp>ADHD</scp> . Journal of Child Psychology and Psychiatry and Allied Disciplines, 2016, 57, 457-461.	3.1	18
229	Temporal relationship between premonitory urges and tics in Gilles de la Tourette syndrome. Cortex, 2016, 77, 24-37.	1.1	101
230	Effects of copper toxicity on response inhibition processes: a study in Wilson's disease. Archives of Toxicology, 2016, 90, 1623-1630.	1.9	4
231	Concurrent information affects response inhibition processes via the modulation of theta oscillations in cognitive control networks. Brain Structure and Function, 2016, 221, 3949-3961.	1.2	61
232	Response mode-dependent differences in neurofunctional networks during response inhibition: an EEG-beamforming study. Brain Structure and Function, 2016, 221, 4091-4101.	1.2	74
233	Interacting sources of interference during sensorimotor integration processes. NeuroImage, 2016, 125, 342-349.	2.1	61
234	Paradox effects of binge drinking on response inhibition processes depending on mental workload. Archives of Toxicology, 2016, 90, 1429-1436.	1.9	20

#	Article	IF	CITATIONS
235	Age-related differences in task goal processing strategies during action cascading. Brain Structure and Function, 2016, 221, 2767-2775.	1.2	11
236	Mammalian cadherins DCHS1-FAT4 affect functional cerebral architecture. Brain Structure and Function, 2016, 221, 2487-2491.	1.2	12
237	The importance of sensory integration processes for action cascading. Scientific Reports, 2015, 5, 9485.	1.6	25
238	Psychophysiological mechanisms underlying response selection in multidimensional space. Scientific Reports, 2015, 5, 7759.	1.6	8
239	Different strategies, but indifferent strategy adaptation during action cascading. Scientific Reports, 2015, 5, 9992.	1.6	16
240	The Effects of Time on Task in Response Selection - An ERP Study of Mental Fatigue. Scientific Reports, 2015, 5, 10113.	1.6	101
241	Conscientiousness increases efficiency of multicomponent behavior. Scientific Reports, 2015, 5, 15731.	1.6	16
242	Interrelation of resting state functional connectivity, striatal <scp>GABA</scp> levels, and cognitive control processes. Human Brain Mapping, 2015, 36, 4383-4393.	1.9	31
243	A perspective on neural and cognitive mechanisms of error commission. Frontiers in Behavioral Neuroscience, 2015, 9, 50.	1.0	31
244	Action Video Gaming and Cognitive Control: Playing First Person Shooter Games Is Associated with Improved Action Cascading but Not Inhibition. PLoS ONE, 2015, 10, e0144364.	1.1	46
245	Predictability and context determine differences in conflict monitoring between adolescence and adulthood. Behavioural Brain Research, 2015, 292, 10-18.	1.2	13
246	Neurofeedback and its possible relevance for the treatment of Tourette syndrome. Neuroscience and Biobehavioral Reviews, 2015, 51, 87-99.	2.9	7
247	Parallel and serial processing in dual-tasking differentially involves mechanisms in the striatum and the lateral prefrontal cortex. Brain Structure and Function, 2015, 220, 3131-3142.	1.2	35
248	Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with Huntington's disease. European Journal of Neuroscience, 2015, 41, 1227-1244.	1.2	15
249	Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Structure and Function, 2015, 220, 3555-3564.	1.2	78
250	Left dominance for language perception starts in the extrastriate cortex: An ERP and sLORETA study. Behavioural Brain Research, 2015, 291, 325-333.	1.2	14
251	Effects of fatigue on cognitive control in neurosarcoidosis. European Neuropsychopharmacology, 2015, 25, 522-530.	0.3	16
252	A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nature Communications, 2015, 6, 6587.	5.8	174

#	Article	IF	CITATIONS
253	The impact of mental workload on inhibitory control subprocesses. NeuroImage, 2015, 112, 96-104.	2.1	45
254	Complex sensorimotor transformation processes required for response selection are facilitated by the striatum. NeuroImage, 2015, 123, 33-41.	2.1	10
255	Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information. NeuroImage, 2015, 120, 36-42.	2.1	44
256	Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Progress in Neurobiology, 2015, 124, 49-83.	2.8	36
257	Action selection in a possible model of striatal medium spiny neuron dysfunction: behavioral and EEG data in a patient with benign hereditary chorea. Brain Structure and Function, 2015, 220, 221-228.	1.2	30
258	Evidence for divergent effects of neurodegeneration in Huntington's disease on attentional selection and neural plasticity: implications for excitotoxicity. Brain Structure and Function, 2015, 220, 1437-1447.	1.2	9
259	Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington's disease. Brain Structure and Function, 2015, 220, 2441-2448.	1.2	33
260	Lateralization of spatial information processing in response monitoring. Frontiers in Psychology, 2014, 5, 22.	1.1	15
261	Handedness genetics: considering the phenotype. Frontiers in Psychology, 2014, 5, 1300.	1.1	43
262	The neural architecture of age-related dual-task interferences. Frontiers in Aging Neuroscience, 2014, 6, 193.	1.7	18
263	<i>DRD1</i> and <i>DRD2</i> Genotypes Modulate Processing Modes of Goal Activation Processes during Action Cascading. Journal of Neuroscience, 2014, 34, 5335-5341.	1.7	61
264	Psychophysiological Mechanisms of Interindividual Differences in Goal Activation Modes During Action Cascading. Cerebral Cortex, 2014, 24, 2120-2129.	1.6	135
265	Feeling safe in the plane: Neural mechanisms underlying superior action control in airplane pilot trainees—A combined EEG/MRS study. Human Brain Mapping, 2014, 35, 5040-5051.	1.9	52
266	Olfactory short-term memory encoding and maintenance — An event-related potential study. NeuroImage, 2014, 98, 475-486.	2.1	8
267	Crosslinking EEG time–frequency decomposition and fMRI in error monitoring. Brain Structure and Function, 2014, 219, 595-605.	1.2	41
268	Binge drinking and the differential influence of ethanol on cognitive control subprocesses: a novel field of neurotoxicology. Archives of Toxicology, 2014, 88, 9-10.	1.9	9
269	Effects of binge drinking on action cascading processes: an EEG study. Archives of Toxicology, 2014, 88, 475-488.	1.9	33
270	The ontogenesis of language lateralization and its relation to handedness. Neuroscience and Biobehavioral Reviews, 2014, 43, 191-198.	2.9	130

#	Article	IF	CITATIONS
271	On the relevance of the NPY2-receptor variation for modes of action cascading processes. NeuroImage, 2014, 102, 558-564.	2.1	15
272	Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behavioural Brain Research, 2014, 274, 53-61.	1.2	35
273	Benign hereditary chorea as an experimental model to investigate the role of medium spiny neurons for response adaptation. Neuropsychologia, 2014, 59, 124-129.	0.7	5
274	Latent Toxoplasma gondii infection leads to improved action control. Brain, Behavior, and Immunity, 2014, 37, 103-108.	2.0	49
275	Stress intensifies demands on response selection during action cascading processes. Psychoneuroendocrinology, 2014, 42, 178-187.	1.3	15
276	NPY2-receptor variation modulates iconic memory processes. European Neuropsychopharmacology, 2014, 24, 1298-1302.	0.3	11
277	Modulatory effects of proinflammatory cytokines for action cascading processes – Evidence from neurosarcoidosis. Brain, Behavior, and Immunity, 2014, 41, 126-133.	2.0	7
278	Striatal disorders dissociate mechanisms of enhanced and impaired response selection — Evidence from cognitive neurophysiology and computational modelling. NeuroImage: Clinical, 2014, 4, 623-634.	1.4	20
279	Changes in Cognitive Control in Pre-Manifest Huntington's Disease Examined Using Pre-Saccadic EEG Potentials – A Longitudinal Study. Journal of Huntington's Disease, 2014, 3, 33-43.	0.9	0
280	FOXP2 variation modulates functional hemispheric asymmetries for speech perception. Brain and Language, 2013, 126, 279-284.	0.8	41
281	The role of the striatum in goal activation of cascaded actions. Neuropsychologia, 2013, 51, 2562-2571.	0.7	27
282	Neuropeptide S receptor (NPSR1) gene variation modulates response inhibition and error monitoring. NeuroImage, 2013, 71, 1-9.	2.1	35
283	Dual-task performance is differentially modulated by rewards and punishments. Behavioural Brain Research, 2013, 250, 304-307.	1.2	18
284	The functional tumor necrosis factor-α (308A/G) polymorphism modulates attentional selection in elderly individuals. Neurobiology of Aging, 2013, 34, 2694.e1-2694.e12.	1.5	20
285	Stress improves task processing efficiency in dual-tasks. Behavioural Brain Research, 2013, 252, 260-265.	1.2	40
286	Learning without Training. Current Biology, 2013, 23, R489-R499.	1.8	76
287	BDNF Val66Met polymorphism and goal-directed behavior in healthy elderly — evidence from auditory distraction. NeuroImage, 2013, 64, 290-298.	2.1	46
288	A novel cognitive-neurophysiological state biomarker in premanifest Huntington's disease validated on longitudinal data. Scientific Reports, 2013, 3, 1797.	1.6	19

#	Article	IF	CITATIONS
289	Response inhibition is modulated by functional cerebral asymmetries for facial expression perception. Frontiers in Psychology, 2013, 4, 879.	1.1	15
290	Differential Effects of Motor Efference Copies and Proprioceptive Information on Response Evaluation Processes. PLoS ONE, 2013, 8, e62335.	1.1	42
291	Transient and steady-state selection in the striatal microcircuit. Frontiers in Computational Neuroscience, 2013, 7, 192.	1.2	35
292	Cholecystokinin A Receptor (CCKAR) Gene Variation Is Associated with Language Lateralization. PLoS ONE, 2013, 8, e53643.	1.1	42
293	On the time course of bottomâ€up and topâ€down processes in selective visual attention: An <scp>EEG</scp> study. Psychophysiology, 2012, 49, 1660-1671.	1.2	46
294	Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses. European Neuropsychopharmacology, 2012, 22, 555-561.	0.3	17
295	Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. NeuroToxicology, 2012, 33, 911-924.	1.4	84
296	The Met-genotype of the BDNF Val66Met polymorphism is associated with reduced Stroop interference in elderly. Neuropsychologia, 2012, 50, 3554-3563.	0.7	41
297	When compensation fails: Attentional deficits in healthy ageing caused by visual distraction. Neuropsychologia, 2012, 50, 3185-3192.	0.7	44
298	When control fails: Influence of the prefrontal but not striatal dopaminergic system on behavioural flexibility in a change detection task. Neuropharmacology, 2012, 62, 1028-1033.	2.0	20
299	Faster Perceptual Learning through Excitotoxic Neurodegeneration. Current Biology, 2012, 22, 1914-1917.	1.8	33
300	Mechanisms mediating parallel action monitoring in fronto-striatal circuits. NeuroImage, 2012, 62, 137-146.	2.1	86
301	Neural Correlates of Individual Performance Differences in Resolving Perceptual Conflict. PLoS ONE, 2012, 7, e42849.	1.1	12
302	Attentional Capture by Irrelevant Transients Leads to Perceptual Errors in a Competitive Change Detection Task. Frontiers in Psychology, 2012, 3, 164.	1.1	13
303	Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage, 2011, 55, 1771-1778.	2.1	89
304	Mental rotation in female fraternal twins: Evidence for intra-uterine hormone transfer?. Biological Psychology, 2011, 86, 90-93.	1.1	73
305	Variation in the NMDA receptor 2B subunit gene GRIN2B is associated with differential language lateralization. Behavioural Brain Research, 2011, 225, 284-289.	1.2	54
306	Effects of aging, Parkinson's disease, and dopaminergic medication on response selection and control. Neurobiology of Aging, 2011, 32, 327-335.	1.5	61

#	Article	IF	CITATIONS
307	The Met-allele of the BDNF Val66Met polymorphism enhances task switching in elderly. Neurobiology of Aging, 2011, 32, 2327.e7-2327.e19.	1.5	87
308	The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes. Neuropharmacology, 2011, 60, 467-471.	2.0	28
309	Double dissociated effects of the functional TNF-α -308G/A polymorphism on processes of cognitive control. Neuropsychologia, 2011, 49, 196-202.	0.7	15
310	The functional 5-HT1A receptor polymorphism affects response inhibition processes in a context-dependent manner. Neuropsychologia, 2011, 49, 2664-2672.	0.7	30
311	On the role of fronto-striatal neural synchronization processes for response inhibition—Evidence from ERP phase-synchronization analyses in pre-manifest Huntington's disease gene mutation carriers. Neuropsychologia, 2011, 49, 3484-3493.	0.7	66
312	Improvement and Impairment of Visually Guided Behavior through LTP- and LTD-like Exposure-Based Visual Learning. Current Biology, 2011, 21, 876-882.	1.8	97
313	Functional 5â€HT1a receptor polymorphism selectively modulates errorâ€specific subprocesses of performance monitoring. Human Brain Mapping, 2010, 31, 621-630.	1.9	42
314	The Biopsychology—Nonlinear Analysis Toolbox: A Free, Open-Source Matlab-Toolbox for the Non-linear Analysis of Time Series Data. Neuroinformatics, 2010, 8, 197-200.	1.5	3
315	Response inhibition subprocesses and dopaminergic pathways: Basal ganglia disease effects. Neuropsychologia, 2010, 48, 366-373.	0.7	170
316	The relevance of the functional 5-HT1A receptor polymorphism for attention and working memory processes during mental rotation of characters. Neuropsychologia, 2010, 48, 1248-1254.	0.7	20
317	Tuning Perceptual Competition. Journal of Neurophysiology, 2010, 103, 1057-1065.	0.9	64
318	The Role of the BDNF Val66Met Polymorphism for the Synchronization of Error-Specific Neural Networks. Journal of Neuroscience, 2010, 30, 10727-10733.	1.7	62
319	Variations in the <i>TNF-</i> α Gene (TNF-α -308G→A) Affect Attention and Action Selection Mechanisms in a Dissociated Fashion. Journal of Neurophysiology, 2010, 104, 2523-2531.	0.9	59
320	Dissociable influences of NR2B-receptor related neural transmission on functions of distinct associative basal ganglia circuits. NeuroImage, 2010, 52, 309-315.	2.1	35
321	Individual differences in ERPs during mental rotation of characters: Lateralization, and performance level. Brain and Cognition, 2010, 72, 238-243.	0.8	35
322	The Reelin (RELN) gene is associated with executive function in healthy individuals. Neurobiology of Learning and Memory, 2010, 94, 446-451.	1.0	24
323	Differential modulations of response control processes by 5-HT1A gene variation. NeuroImage, 2010, 50, 764-771.	2.1	18
324	Response Monitoring in De Novo Patients with Parkinson's Disease. PLoS ONE, 2009, 4, e4898.	1.1	47

#	Article	IF	CITATIONS
325	Effects of stimulus–response compatibility on inhibitory processes in Parkinson's disease. European Journal of Neuroscience, 2009, 29, 855-860.	1.2	74
326	Alterations in voluntary movement execution in Huntington's disease are related to the dominant motor system — Evidence from event-related potentials. Experimental Neurology, 2009, 216, 148-157.	2.0	31
327	Levels of error processing in Huntington's disease: A combined study using event-related potentials and voxel-based morphometry. Human Brain Mapping, 2008, 29, 121-130.	1.9	50
328	fMRI reveals altered auditory processing in manifest and premanifest Huntington's disease. Neuropsychologia, 2008, 46, 1279-1289.	0.7	64
329	Response inhibition in Huntington's disease—A study using ERPs and sLORETA. Neuropsychologia, 2008, 46, 1290-1297.	0.7	84
330	Time estimation in healthy ageing and neurodegenerative basal ganglia disorders. Neuroscience Letters, 2008, 442, 34-38.	1.0	51
331	Increased Cognitive Functioning in Symptomatic Huntington's Disease As Revealed by Behavioral and Event-Related Potential Indices of Auditory Sensory Memory and Attention. Journal of Neuroscience, 2008, 28, 11695-11702.	1.7	48
332	Stimulus-Response Compatibility in Huntington's Disease: A Cognitive-Neurophysiological Analysis. Journal of Neurophysiology, 2008, 99, 1213-1223.	0.9	68
333	Time Processing in Huntington's Disease: A Group-Control Study. PLoS ONE, 2007, 2, e1263.	1.1	65
334	Functional compensation or pathology in cortico-subcortical interactions in preclinical Huntington's disease?. Neuropsychologia, 2007, 45, 2922-2930.	0.7	51
335	Error Processing in Huntington's Disease. PLoS ONE, 2006, 1, e86.	1.1	59
336	Developmental Changes in Visual Line Bisection in Women Throughout Adulthood. Developmental Neuropsychology, 2006, 30, 753-767.	1.0	23
337	A Metacontrol Perspective on Neurocognitive Atypicality: From Unipolar to Bipolar Accounts. Frontiers in Psychiatry, 0, 13, .	1.3	3
338	The neural stability of perception–motor representations affects action outcomes and behavioral adaptation. Psychophysiology, 0, , .	1.2	3