
David Michael Underhill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3827125/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature, 2001, 410, 1099-1103.	27.8	3,186
2	MECHANISMS OF PHAGOCYTOSIS IN MACROPHAGES. Annual Review of Immunology, 1999, 17, 593-623.	21.8	2,366
3	Oxidized Mitochondrial DNA Activates the NLRP3 Inflammasome during Apoptosis. Immunity, 2012, 36, 401-414.	14.3	1,618
4	Collaborative Induction of Inflammatory Responses by Dectin-1 and Toll-like Receptor 2. Journal of Experimental Medicine, 2003, 197, 1107-1117.	8.5	1,447
5	The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 1999, 401, 811-815.	27.8	1,295
6	Phagocytosis of Microbes: Complexity in Action. Annual Review of Immunology, 2002, 20, 825-852.	21.8	954
7	Interactions Between Commensal Fungi and the C-Type Lectin Receptor Dectin-1 Influence Colitis. Science, 2012, 336, 1314-1317.	12.6	886
8	Activation of the innate immune receptor Dectin-1 upon formation of a â€~phagocytic synapse'. Nature, 2011, 472, 471-475.	27.8	703
9	Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nature Immunology, 2001, 2, 346-352.	14.5	637
10	Toll-like receptors: key mediators of microbe detection. Current Opinion in Immunology, 2002, 14, 103-110.	5.5	632
11	Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO Journal, 2005, 24, 1277-1286.	7.8	573
12	βâ€glucan recognition by the innate immune system. Immunological Reviews, 2009, 230, 38-50.	6.0	532
13	The mycobiota: interactions between commensal fungi and the host immune system. Nature Reviews Immunology, 2014, 14, 405-416.	22.7	525
14	Information processing during phagocytosis. Nature Reviews Immunology, 2012, 12, 492-502.	22.7	463
15	Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. Blood, 2005, 106, 2543-2550.	1.4	446
16	Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell, 2016, 166, 624-636.	28.9	401
17	Dectin-2 Is a Pattern Recognition Receptor for Fungi That Couples with the Fc Receptor γ Chain to Induce Innate Immune Responses. Journal of Biological Chemistry, 2006, 281, 38854-38866.	3.4	381
18	Dectin-1 Stimulation by <i>Candida albicans</i> Yeast or Zymosan Triggers NFAT Activation in Macrophages and Dendritic Cells. Journal of Immunology, 2007, 178, 3107-3115.	0.8	330

#	Article	IF	CITATIONS
19	Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host and Microbe, 2016, 19, 865-873.	11.0	329
20	Dectin-1 and TLRs Permit Macrophages to Distinguish between Different <i>Aspergillus fumigatus</i> Cellular States. Journal of Immunology, 2006, 176, 3717-3724.	0.8	305
21	Peptidoglycan recognition by the innate immune system. Nature Reviews Immunology, 2018, 18, 243-254.	22.7	297
22	Malassezia Is Associated with Crohn's Disease and Exacerbates Colitis in Mouse Models. Cell Host and Microbe, 2019, 25, 377-388.e6.	11.0	283
23	Commensal Fungi in Health and Disease. Cell Host and Microbe, 2017, 22, 156-165.	11.0	258
24	Dynamin 2 Is Required for Phagocytosis in Macrophages. Journal of Experimental Medicine, 1999, 190, 1849-1856.	8.5	252
25	Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes and Infection, 2004, 6, 1368-1373.	1.9	240
26	Staphylococcus aureus Evades Lysozyme-Based Peptidoglycan Digestion that Links Phagocytosis, Inflammasome Activation, and IL-11² Secretion. Cell Host and Microbe, 2010, 7, 38-49.	11.0	239
27	Mini-review Toll-like receptors: networking for success. European Journal of Immunology, 2003, 33, 1767-1775.	2.9	216
28	Translocation of Viable Gut Microbiota to Mesenteric Adipose Drives Formation of Creeping Fat in Humans. Cell, 2020, 183, 666-683.e17.	28.9	211
29	Dectin-1-triggered Recruitment of Light Chain 3 Protein to Phagosomes Facilitates Major Histocompatibility Complex Class II Presentation of Fungal-derived Antigens. Journal of Biological Chemistry, 2012, 287, 34149-34156.	3.4	187
30	Differential Use of CARD9 by Dectin-1 in Macrophages and Dendritic Cells. Journal of Immunology, 2009, 182, 1146-1154.	0.8	170
31	Collaboration between the innate immune receptors dectinâ€1, TLRs, and Nods. Immunological Reviews, 2007, 219, 75-87.	6.0	163
32	The many faces of ITAMs. Trends in Immunology, 2007, 28, 66-73.	6.8	161
33	Mycobiome: Approaches to analysis of intestinal fungi. Journal of Immunological Methods, 2015, 421, 112-121.	1.4	145
34	Dynamic Interactions of Macrophages with T Cells during Antigen Presentation. Journal of Experimental Medicine, 1999, 190, 1909-1914.	8.5	128
35	<i>Debaryomyces</i> is enriched in Crohn's disease intestinal tissue and impairs healing in mice. Science, 2021, 371, 1154-1159.	12.6	126
36	Commensal bacteria and fungi differentially regulate tumor responses to radiation therapy. Cancer Cell, 2021, 39, 1202-1213.e6.	16.8	124

#	Article	IF	CITATIONS
37	Mechanisms of Fc Receptor and Dectinâ€l Activation for Phagocytosis. Traffic, 2012, 13, 1062-1071.	2.7	119
38	Characterization of Bacterial and Fungal Microbiome in Children with Hirschsprung Disease with and without a History of Enterocolitis: A Multicenter Study. PLoS ONE, 2015, 10, e0124172.	2.5	118
39	Immune Interactions with Pathogenic and Commensal Fungi: A Two-Way Street. Immunity, 2015, 43, 845-858.	14.3	117
40	Macrophage recognition of zymosan particles. Journal of Endotoxin Research, 2003, 9, 176-180.	2.5	113
41	Immunity to Commensal Fungi: Detente and Disease. Annual Review of Pathology: Mechanisms of Disease, 2017, 12, 359-385.	22.4	88
42	Expansion of commensal fungus Wallemia mellicola in the gastrointestinal mycobiota enhances the severity of allergic airway disease in mice. PLoS Pathogens, 2018, 14, e1007260.	4.7	76
43	Phagosomal Degradation Increases TLR Access to Bacterial Ligands and Enhances Macrophage Sensitivity to Bacteria. Journal of Immunology, 2011, 187, 6002-6010.	0.8	71
44	The mycobiome of the human urinary tract: potential roles for fungi in urology. Annals of Translational Medicine, 2017, 5, 31-31.	1.7	68
45	Group B Streptococcus Evades Host Immunity by Degrading Hyaluronan. Cell Host and Microbe, 2015, 18, 694-704.	11.0	66
46	Toll-like receptors and microbes take aim at each other. Current Opinion in Immunology, 2004, 16, 483-487.	5.5	63
47	Cutting Edge: FYCO1 Recruitment to Dectin-1 Phagosomes Is Accelerated by Light Chain 3 Protein and Regulates Phagosome Maturation and Reactive Oxygen Production. Journal of Immunology, 2014, 192, 1356-1360.	0.8	63
48	Host–microbe interactions: commensal fungi in the gut. Current Opinion in Microbiology, 2017, 40, 131-137.	5.1	62
49	Striking a balance: fungal commensalism versus pathogenesis. Current Opinion in Microbiology, 2013, 16, 366-373.	5.1	59
50	Poorly Cross-Linked Peptidoglycan in MRSA Due to mecA Induction Activates the Inflammasome and Exacerbates Immunopathology. Cell Host and Microbe, 2015, 18, 604-612.	11.0	58
51	Myeloid ATG16L1 Facilitates Host–Bacteria Interactions in Maintaining Intestinal Homeostasis. Journal of Immunology, 2017, 198, 2133-2146.	0.8	56
52	Élie Metchnikoff (1845–1916): celebrating 100 years of cellular immunology and beyond. Nature Reviews Immunology, 2016, 16, 651-656.	22.7	55
53	Direct Antimicrobial Activity of IFN-β. Journal of Immunology, 2017, 198, 4036-4045.	0.8	48
54	Persistent Microvascular Obstruction After Myocardial Infarction Culminates in the Confluence of Ferric Iron Oxide Crystals, Proinflammatory Burden, and Adverse Remodeling. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	44

#	Article	IF	CITATIONS
55	Failure To Induce IFN-β Production during <i>Staphylococcus aureus</i> Infection Contributes to Pathogenicity. Journal of Immunology, 2012, 189, 4537-4545.	0.8	40
56	Fungal microbiome in inflammatory bowel disease: a critical assessment. Journal of Clinical Investigation, 2022, 132, .	8.2	35
57	Autocrine Type I IFN Signaling in Dendritic Cells Stimulated with Fungal β-Glucans or Lipopolysaccharide Promotes CD8 T Cell Activation. Journal of Immunology, 2017, 198, 375-382.	0.8	29
58	Optimization of DNA extraction from human urinary samples for mycobiome community profiling. PLoS ONE, 2019, 14, e0210306.	2.5	25
59	Non-protective immune imprint underlies failure of Staphylococcus aureus IsdB vaccine. Cell Host and Microbe, 2022, 30, 1163-1172.e6.	11.0	24
60	Inflammatory properties of antibiotic-treated bacteria. Journal of Leukocyte Biology, 2017, 101, 127-134.	3.3	23
61	Â-glucan signaling connects phagocytosis to autophagy. Glycobiology, 2013, 23, 1047-1051.	2.5	21
62	<i>Malassezia</i> spp. induce inflammatory cytokines and activate NLRP3 inflammasomes in phagocytes. Journal of Leukocyte Biology, 2021, 109, 161-172.	3.3	21
63	Phagosome Maturation: Steady as She Goes. Immunity, 2005, 23, 343-344.	14.3	19
64	Batf3 deficiency is not critical for the generation of CD8α+ dendritic cells. Immunobiology, 2015, 220, 518-524.	1.9	18
65	Current understanding of fungal microflora in inflammatory bowel disease pathogenesis. Inflammatory Bowel Diseases, 2008, 14, 1147-1153.	1.9	17
66	C-Type Lectin Receptors in Phagocytosis. Current Topics in Microbiology and Immunology, 2020, 429, 1-18.	1.1	15
67	Cryptococcal meningitis in a daily cannabis smoker without evidence of immunodeficiency. BMJ Case Reports, 2018, 2018, bcr-2017-221435.	0.5	14
68	Early Gut Fungal and Bacterial Microbiota and Childhood Growth. Frontiers in Pediatrics, 2020, 8, 572538.	1.9	13
69	Harnessing antifungal immunity in pursuit of a Staphylococcus aureus vaccine strategy. PLoS Pathogens, 2020, 16, e1008733.	4.7	10
70	The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature, 1999, 402, 39-43.	27.8	9
71	Mucosal immune responses to fungi and the implications for inflammatory bowel disease. Current Opinion in Gastroenterology, 2018, 34, 398-403.	2.3	7
72	Time to cast a larger net. Nature Immunology, 2014, 15, 1000-1001.	14.5	5

#	Article	IF	CITATIONS
73	Frontline Science: Antibiotic treatment routes <i>Mycobacterium avium</i> to phagolysosomes without triggering proinflammatory cytokine production in human MI•s. Journal of Leukocyte Biology, 2021, 109, 23-33.	3.3	4
74	Phagocytosis. , 2014, , 91-109.		3
75	Unsupervised Machine Learning Approaches Reveal Distinct Phenotypes of Perceived Bladder Pain: A Pilot Study. Frontiers in Pain Research, 2021, 2, .	2.0	2
76	Candida-induced asthma steps up to the plate-lets. Immunity, 2021, 54, 2442-2444.	14.3	1
77	Pathogen size alters C-type lectin receptor signaling in dendritic cells to influence CD4 Th9 cell differentiation. Cell Reports, 2022, 38, 110567.	6.4	1
78	4196 MICROBIAL COMPOSITION DEFINES PELVIC PAIN PHENOTYPES IN REPRODUCTIVE-AGE WOMEN. Journal of Clinical and Translational Science, 2020, 4, 12-13.	0.6	0