Christopher John Plack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3826145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The shape of the ear's temporal window. Journal of the Acoustical Society of America, 1988, 83, 1102-1116.	1.1	250
2	A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. Journal of the Acoustical Society of America, 1997, 101, 3666-3675.	1.1	246
3	Perceptual Consequences of "Hidden―Hearing Loss. Trends in Hearing, 2014, 18, 233121651455062.	1.3	191
4	Tinnitus with a normal audiogram: Relation to noise exposure but no evidence for cochlear synaptopathy. Hearing Research, 2017, 344, 265-274.	2.0	179
5	Effects of noise exposure on young adults with normal audiograms I: Electrophysiology. Hearing Research, 2017, 344, 68-81.	2.0	176
6	Perception of soundscapes: An interdisciplinary approach. Applied Acoustics, 2013, 74, 224-231.	3.3	172
7	Temporal window shape as a function of frequency and level. Journal of the Acoustical Society of America, 1990, 87, 2178-2187.	1.1	167
8	Basilar-membrane nonlinearity and the growth of forward masking. Journal of the Acoustical Society of America, 1998, 103, 1598-1608.	1.1	152
9	Pitch Processing Sites in the Human Auditory Brain. Cerebral Cortex, 2009, 19, 576-585.	2.9	149
10	The search for noise-induced cochlear synaptopathy in humans: Mission impossible?. Hearing Research, 2019, 377, 88-103.	2.0	141
11	Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism. Journal of the Acoustical Society of America, 1999, 106, 2761-2778.	1.1	137
12	Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hearing Research, 2018, 364, 142-151.	2.0	134
13	The Effects of Age-Related Hearing Loss on the Brain and Cognitive Function. Trends in Neurosciences, 2020, 43, 810-821.	8.6	130
14	Subcortical Plasticity Following Perceptual Learning in a Pitch Discrimination Task. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 89-100.	1.8	127
15	Listening effort at signal-to-noise ratios that are typical of the school classroom. International Journal of Audiology, 2010, 49, 928-932.	1.7	120
16	Cochlear nonlinearity between 500 and 8000 Hz in listeners with normal hearing. Journal of the Acoustical Society of America, 2003, 113, 951-960.	1.1	118
17	Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss. Journal of the Acoustical Society of America, 2004, 115, 1684-1695.	1.1	101
18	Effects of noise exposure on young adults with normal audiograms II: Behavioral measures. Hearing Research, 2017, 356, 74-86.	2.0	93

#	Article	IF	CITATIONS
19	The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hearing Research, 2019, 377, 109-121.	2.0	76
20	The effects of age and hearing loss on interaural phase difference discrimination. Journal of the Acoustical Society of America, 2014, 135, 342-351.	1.1	72
21	Assessment of Children With Suspected Auditory Processing Disorder. Ear and Hearing, 2014, 35, 295-305.	2.1	71
22	Suppression and the upward spread of masking. Journal of the Acoustical Society of America, 1998, 104, 3500-3510.	1.1	68
23	Toward a Diagnostic Test for Hidden Hearing Loss. Trends in Hearing, 2016, 20, 233121651665746.	1.3	68
24	Subcortical Neural Synchrony and Absolute Thresholds Predict Frequency Discrimination Independently. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 757-766.	1.8	67
25	The Frequency Following Response (FFR) May Reflect Pitch-Bearing Information But is Not a Direct Representation of Pitch. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 767-782.	1.8	65
26	Detection of temporal gaps in sinusoids by normally hearing and hearingâ€impaired subjects. Journal of the Acoustical Society of America, 1989, 85, 1266-1275.	1.1	63
27	Cross-Modal and Non-Sensory Influences on Auditory Streaming. Perception, 2003, 32, 1393-1402.	1.2	63
28	Basilar-membrane nonlinearity estimated by pulsation threshold. Journal of the Acoustical Society of America, 2000, 107, 501-507.	1.1	61
29	Differences in frequency modulation detection and fundamental frequency discrimination between complex tones consisting of resolved and unresolved harmonics. Journal of the Acoustical Society of America, 1995, 98, 1355-1364.	1.1	58
30	Psychophysical evidence for auditory compression at low characteristic frequencies. Journal of the Acoustical Society of America, 2003, 113, 1574-1586.	1.1	57
31	Time Analysis. Springer Handbook of Auditory Research, 1993, , 116-154.	0.7	57
32	Effects of masker frequency and duration in forward masking: further evidence for the influence of peripheral nonlinearity. Hearing Research, 2000, 150, 258-266.	2.0	55
33	Pitch coding and pitch processing in the human brain. Hearing Research, 2014, 307, 53-64.	2.0	55
34	The Psychophysics of Pitch. , 2005, , 7-55.		53
35	Supra-threshold auditory brainstem response amplitudes in humans: Test-retest reliability, electrode montage and noise exposure. Hearing Research, 2018, 364, 38-47.	2.0	53
36	Listening to urban soundscapes: Physiological validity of perceptual dimensions. Psychophysiology, 2011, 48, 258-268.	2.4	46

#	Article	IF	CITATIONS
37	Forward Masking Additivity and Auditory Compression at Low and High Frequencies. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 405-415.	1.8	45
38	Reexamining the Evidence for a Pitch-Sensitive Region: A Human fMRI Study Using Iterated Ripple Noise. Cerebral Cortex, 2012, 22, 745-753.	2.9	45
39	Across-frequency interference effects in fundamental frequency discrimination: Questioning evidence for two pitch mechanisms. Journal of the Acoustical Society of America, 2004, 116, 1092-1104.	1.1	44
40	Perceived continuity and pitch perception. Journal of the Acoustical Society of America, 2000, 108, 1162.	1.1	43
41	Cochlear compression in listeners with moderate sensorineural hearing loss. Hearing Research, 2005, 205, 172-183.	2.0	43
42	Temporal processing of the pitch of complex tones. Journal of the Acoustical Society of America, 1998, 103, 2051-2063.	1.1	40
43	Differential Group Delay of the Frequency Following Response Measured Vertically and Horizontally. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 133-143.	1.8	40
44	Pump Up the Volume: Could Excessive Neural Gain Explain Tinnitus and Hyperacusis?. Audiology and Neuro-Otology, 2015, 20, 273-282.	1.3	39
45	The effects of a high-frequency suppressor on tuning curves and derived basilar-membrane response functions. Journal of the Acoustical Society of America, 2003, 114, 322-332.	1.1	38
46	Reliability and interrelations of seven proxy measures of cochlear synaptopathy. Hearing Research, 2019, 375, 34-43.	2.0	38
47	Investigating the effects of noise exposure on self-report, behavioral and electrophysiological indices of hearing damage in musicians with normal audiometric thresholds. Hearing Research, 2020, 395, 108021.	2.0	37
48	Neural encoding in the human brainstem relevant to the pitch of complex tones. Hearing Research, 2011, 275, 110-119.	2.0	36
49	Acoustic Middle-Ear-Muscle-Reflex Thresholds in Humans with Normal Audiograms: No Relations to Tinnitus, Speech Perception in Noise, or Noise Exposure. Neuroscience, 2019, 407, 75-82.	2.3	36
50	Decrement detection in normal and impaired ears. Journal of the Acoustical Society of America, 1991, 90, 3069-3076.	1.1	35
51	Phase locked neural activity in the human brainstem predicts preference for musical consonance. Neuropsychologia, 2014, 58, 23-32.	1.6	35
52	The Noise Exposure Structured Interview (NESI): An Instrument for the Comprehensive Estimation of Lifetime Noise Exposure. Trends in Hearing, 2018, 22, 233121651880321.	1.3	35
53	Estimates of compression at low and high frequencies using masking additivity in normal and impaired ears. Journal of the Acoustical Society of America, 2008, 123, 4321-4330.	1.1	33
54	Effect of Human Auditory Efferent Feedback on Cochlear Gain and Compression. Journal of Neuroscience, 2014, 34, 15319-15326.	3.6	33

#	Article	IF	CITATIONS
55	Effects of Age and Noise Exposure on Proxy Measures of Cochlear Synaptopathy. Trends in Hearing, 2019, 23, 233121651987730.	1.3	33
56	Masking by Inaudible Sounds and the Linearity of Temporal Summation. Journal of Neuroscience, 2006, 26, 8767-8773.	3.6	32
57	Effect of duration on the frequency discrimination of individual partials in a complex tone and on the discrimination of fundamental frequency. Journal of the Acoustical Society of America, 2007, 121, 373-382.	1.1	32
58	The human ???pitch center??? responds differently to iterated noise and Huggins pitch. NeuroReport, 2007, 18, 323-327.	1.2	32
59	Intensity discrimination under backward masking. Journal of the Acoustical Society of America, 1992, 92, 3097-3101.	1.1	31
60	Intensity discrimination under forward and backward masking: Role of referential coding. Journal of the Acoustical Society of America, 1995, 97, 1141-1149.	1.1	31
61	Losing the Music: Aging Affects the Perception and Subcortical Neural Representation of Musical Harmony. Journal of Neuroscience, 2015, 35, 4071-4080.	3.6	30
62	The effects of notched noise on intensity discrimination under forward masking. Journal of the Acoustical Society of America, 1992, 92, 1902-1910.	1.1	29
63	Loudness Perception and Intensity Coding. , 1995, , 123-160.		29
64	Temporal integration and compression near absolute threshold in normal and impaired ears. Journal of the Acoustical Society of America, 2007, 122, 2236-2244.	1.1	27
65	The effect of stimulus context on pitch representations in the human auditory cortex. NeuroImage, 2010, 51, 808-816.	4.2	27
66	The Sense of Hearing. , 0, , .		27
67	Frequency discrimination duration effects for Huggins pitch and narrowband noise (L). Journal of the Acoustical Society of America, 2011, 129, 1-4.	1.1	26
68	Tinnitus with a normal audiogram: Role of high-frequency sensitivity and reanalysis of brainstem-response measures to avoid audiometric over-matching. Hearing Research, 2017, 356, 116-117.	2.0	26
69	Loudness enhancement and intensity discrimination under forward and backward masking. Journal of the Acoustical Society of America, 1996, 100, 1024-1030.	1.1	24
70	On- and off-frequency compression estimated using a new version of the additivity of forward masking technique. Journal of the Acoustical Society of America, 2010, 128, 771-786.	1.1	24
71	Human auditory cortical responses to pitch and to pitch strength. NeuroReport, 2011, 22, 111-115.	1.2	22
72	Suppression and the dynamic range of hearing. Journal of the Acoustical Society of America, 1993, 93, 976-982.	1.1	20

#	Article	IF	CITATIONS
73	Pitch matches between unresolved complex tones differing by a single interpulse interval. Journal of the Acoustical Society of America, 2000, 108, 696-705.	1.1	19
74	Dominance region for pitch: Effects of duration and dichotic presentation. Journal of the Acoustical Society of America, 2005, 117, 1326-1336.	1.1	19
75	Pitch Discrimination Learning: Specificity for Pitch and Harmonic Resolvability, and Electrophysiological Correlates. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 503-517.	1.8	19
76	Effect of noise on the detectability and fundamental frequency discrimination of complex tones. Journal of the Acoustical Society of America, 2006, 120, 957-965.	1.1	17
77	Estimating peripheral gain and compression using fixed-duration masking curves. Journal of the Acoustical Society of America, 2013, 133, 4145-4155.	1.1	17
78	The binaural masking level difference: cortical correlates persist despite severe brain stem atrophy in progressive supranuclear palsy. Journal of Neurophysiology, 2014, 112, 3086-3094.	1.8	17
79	Specificity of the Human Frequency Following Response for Carrier and Modulation Frequency Assessed Using Adaptation. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 747-762.	1.8	16
80	Earplug-induced changes in acoustic reflex thresholds suggest that increased subcortical neural gain may be necessary but not sufficient for the occurrence of tinnitus. Neuroscience, 2019, 407, 192-199.	2.3	16
81	Effects of age on electrophysiological measures of cochlear synaptopathy in humans. Hearing Research, 2020, 396, 108068.	2.0	16
82	Self-reported hearing difficulties are associated with loneliness, depression and cognitive dysfunction during the COVID-19 pandemic. International Journal of Audiology, 2022, 61, 97-101.	1.7	16
83	Musical Consonance: The Importance of Harmonicity. Current Biology, 2010, 20, R476-R478.	3.9	15
84	The detection of differences in the depth of frequency modulation. Journal of the Acoustical Society of America, 1994, 96, 115-125.	1.1	14
85	Auditory Brainstem Correlates of Basilar Membrane Nonlinearity in Humans. Audiology and Neuro-Otology, 2009, 14, 88-97.	1.3	14
86	Multimedia Quality Assessment [DSP Forum]. IEEE Signal Processing Magazine, 2011, 28, 164-177.	5.6	14
87	Differences between psychoacoustic and frequency following response measures of distortion tone level and masking. Journal of the Acoustical Society of America, 2012, 132, 2524-2535.	1.1	14
88	A behavioral measure of the cochlear changes underlying temporary threshold shifts. Hearing Research, 2011, 277, 78-87.	2.0	13
89	Using acoustic reflex threshold, auditory brainstem response and loudness judgments to investigate changes in neural gain following acute unilateral deprivation in normal hearing adults. Hearing Research, 2017, 345, 88-95.	2.0	13
90	Effect of back wood choice on the perceived quality of steel-string acoustic guitars. Journal of the Acoustical Society of America, 2018, 144, 3533-3547.	1.1	13

CHRISTOPHER JOHN PLACK

#	Article	IF	CITATIONS
91	Effects of age on psychophysical measures of auditory temporal processing and speech reception at low and high levels. Hearing Research, 2021, 400, 108117.	2.0	13
92	Is COVID-19 associated with self-reported audio-vestibular symptoms?. International Journal of Audiology, 2022, 61, 832-840.	1.7	13
93	Time course and frequency specificity of sub-cortical plasticity in adults following acute unilateral deprivation. Hearing Research, 2016, 341, 210-219.	2.0	12
94	Psychophysical tuning curves at very high frequencies. Journal of the Acoustical Society of America, 2005, 118, 2498-2506.	1.1	11
95	Reduced contribution of a nonsimultaneous mistuned harmonic to residue pitch. Journal of the Acoustical Society of America, 2005, 118, 3783-3793.	1.1	11
96	Pitch discrimination interference between binaural and monaural or diotic pitches. Journal of the Acoustical Society of America, 2009, 126, 281-290.	1.1	11
97	Enhanced intensity discrimination in the intact ear of adults with unilateral deafness. Journal of the Acoustical Society of America, 2015, 137, EL408-EL414.	1.1	11
98	Consonance perception beyond the traditional existence region of pitch. Journal of the Acoustical Society of America, 2019, 146, 2279-2290.	1.1	11
99	Extended high-frequency audiometry in research and clinical practice. Journal of the Acoustical Society of America, 2022, 151, 1944-1955.	1.1	11
100	Factors affecting the duration effect in pitch perception for unresolved complex tones. Journal of the Acoustical Society of America, 2003, 114, 3309-3316.	1.1	10
101	The Role of Suppression in the Upward Spread of Masking. JARO - Journal of the Association for Research in Otolaryngology, 2006, 6, 368-377.	1.8	10
102	A further test of the linearity of temporal summation in forward masking. Journal of the Acoustical Society of America, 2007, 122, 1880-1883.	1.1	10
103	The Auditory Enhancement Effect is Not Reflected in the 80-Hz Auditory Steady-State Response. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 621-630.	1.8	10
104	The Role of the Clinically Obtained Acoustic Reflex as a Research Tool for Subclinical Hearing Pathologies. Trends in Hearing, 2020, 24, 233121652097286.	1.3	10
105	Further examination of pitch discrimination interference between complex tones containing resolved harmonics. Journal of the Acoustical Society of America, 2009, 125, 1059-1066.	1.1	9
106	Effects of High-Intensity Airborne Ultrasound Exposure on Behavioural and Electrophysiological Measures of Auditory Function. Acta Acustica United With Acustica, 2019, 105, 1183-1197.	0.8	9
107	Beneficial effects of notched noise on intensity discrimination in the region of the "severe departure― Journal of the Acoustical Society of America, 1998, 103, 2530-2538.	1.1	8

108 Overview: The Present and Future of Pitch. , 2005, , 1-6.

#	Article	IF	CITATIONS
109	The effects of low- and high-frequency suppressors on psychophysical estimates of basilar-membrane compression and gain. Journal of the Acoustical Society of America, 2007, 121, 2832-2841.	1.1	8
110	Combination of Spectral and Binaurally Created Harmonics in a Common Central Pitch Processor. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 253-260.	1.8	8
111	The effect of tone-vocoding on spatial release from masking for old, hearing-impaired listeners. Journal of the Acoustical Society of America, 2017, 141, 2591-2603.	1.1	8
112	Blood Prestin Levels in Normal Hearing and in Sensorineural Hearing Loss: A Scoping Review. Ear and Hearing, 2021, 42, 1127-1136.	2.1	8
113	Frequency Tuning of the Efferent Effect on Cochlear Gain in Humans. Advances in Experimental Medicine and Biology, 2016, 894, 477-484.	1.6	8
114	The Physiological Bases of Hidden Noise-Induced Hearing Loss: Protocol for a Functional Neuroimaging Study. JMIR Research Protocols, 2018, 7, e79.	1.0	8
115	Temporal factors in referential intensity coding. Journal of the Acoustical Society of America, 1996, 100, 1031-1042.	1.1	7
116	The role of excitation-pattern cues in the detection of frequency shifts in bandpass-filtered complex tones. Journal of the Acoustical Society of America, 2015, 137, 2687-2697.	1.1	7
117	The association between subcortical and cortical fMRI and lifetime noise exposure in listeners with normal hearing thresholds. NeuroImage, 2020, 204, 116239.	4.2	7
118	Subclinical Auditory Neural Deficits in Patients With Type 1 Diabetes Mellitus. Ear and Hearing, 2020, 41, 561-575.	2.1	7
119	Which interventions increase hearing protection behaviors during noisy recreational activities? A systematic review. BMC Public Health, 2020, 20, 1376.	2.9	7
120	The detection of increments and decrements is not facilitated by abrupt onsets or offsets. Journal of the Acoustical Society of America, 2006, 119, 3950-3959.	1.1	6
121	Combining information across frequency regions in fundamental frequency discrimination. Journal of the Acoustical Society of America, 2010, 127, 2466-2478.	1.1	6
122	No Evidence for ITD-Specific Adaptation in the Frequency Following Response. Advances in Experimental Medicine and Biology, 2013, 787, 231-238.	1.6	6
123	Identifying Targets for Interventions to Increase Uptake and Use of Hearing Protection in Noisy Recreational Settings. International Journal of Environmental Research and Public Health, 2021, 18, 8025.	2.6	6
124	Identifying barriers and facilitators of hearing protection use in early-career musicians: a basis for designing interventions to promote uptake and sustained use. International Journal of Audiology, 2022, 61, 463-472.	1.7	6
125	The Relative and Combined Effects of Noise Exposure and Aging on Auditory Peripheral Neural Deafferentation: A Narrative Review. Frontiers in Aging Neuroscience, 0, 14, .	3.4	6
126	Chasing the conversation: Autistic experiences of speech perception. Autism and Developmental Language Impairments, 2022, 7, 239694152210775.	1.6	5

#	Article	IF	CITATIONS
127	Perceived continuity and pitch shifts for complex tones with unresolved harmonics. Journal of the Acoustical Society of America, 2010, 128, 1922-1929.	1.1	4
128	Differences in short-term training for interaural phase difference discrimination between two different forced-choice paradigms. Journal of the Acoustical Society of America, 2013, 134, 2635-2638.	1.1	4
129	Subcortical representation of musical dyads: Individual differences and neural generators. Hearing Research, 2015, 323, 9-21.	2.0	4
130	Short-Term Learning and Memory: Training and Perceptual Learning. Springer Handbook of Auditory Research, 2017, , 75-100.	0.7	4
131	Threshold Equalizing Noise Test Reveals Suprathreshold Loss of Hearing Function, Even in the "Normal―Audiogram Range. Ear and Hearing, 2022, 43, 1208-1221.	2.1	4
132	Identifying Targets for Interventions to Increase Earplug Use in Noisy Recreational Settings: A Qualitative Interview Study. International Journal of Environmental Research and Public Health, 2021, 18, 12879.	2.6	4
133	Pitch shifts for complex tones with unresolved harmonics and the implications for models of pitch perception. Journal of the Acoustical Society of America, 2005, 118, 934-945.	1.1	3
134	Reduced contribution of a nonsimultaneous mistuned harmonic to residue pitch: The role of harmonic number. Journal of the Acoustical Society of America, 2009, 125, 15-18.	1.1	3
135	Cochlear Compression: Recent Insights from Behavioural Experiments. Advances in Experimental Medicine and Biology, 2013, 787, 31-38.	1.6	3
136	Representations of pitch and slow modulation in auditory cortex. Frontiers in Systems Neuroscience, 2013, 7, 62.	2.5	3
137	Low-sound-level auditory processing in noise-exposed adults. Hearing Research, 2021, 409, 108309.	2.0	3
138	Relations between speechâ€reception, psychophysical temporal processing, and subcortical electrophysiological measures of auditory function in humans. Hearing Research, 2022, 417, 108456.	2.0	3
139	Improved Psychophysical Methods to Estimate Peripheral Gain and Compression. Advances in Experimental Medicine and Biology, 2013, 787, 39-46.	1.6	2
140	Additivity of masking and auditory compression. , 2005, , 60-66.		1
141	Central Auditory Masking by an Illusory Tone. PLoS ONE, 2013, 8, e75822.	2.5	1
142	No change in the acoustic reflex threshold and auditory brainstem response following short-term acoustic stimulation in normal hearing adults. Journal of the Acoustical Society of America, 2016, 140, 2725-2734.	1.1	1
143	The Effect of Lifetime Noise Exposure and Aging on Speech-Perception-in-Noise Ability and Self-Reported Hearing Symptoms: An Online Study. Frontiers in Aging Neuroscience, 0, 14, .	3.4	1
144	The Relation Between Cochlear Neuropathy, Hidden Hearing Loss and Obscure Auditory Dysfunction. Perspectives on Hearing and Hearing Disorders Research and Research Diagnostics, 2015, 19, 32.	0.4	0

#	Article	IF	CITATIONS
145	Editorial: Bridging the gap between animal and human studies of hearing. Hearing Research, 2019, 382, 107778.	2.0	0
146	ManCAD100: 100 Years of Audiology and Deaf Education at Manchester. Trends in Hearing, 2019, 23, 233121651988623.	1.3	0
147	Comparison of continuous sampling with active noise cancelation and sparse sampling for cortical and subcortical auditory functional MRI. Magnetic Resonance in Medicine, 2021, 86, 2577-2588.	3.0	0
148	A Temporal Code for Huggins Pitch?. , 2010, , 191-199.		0