Michael W Deininger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3825963/publications.pdf Version: 2024-02-01

		50170	14156
139	17,479	46	128
papers	citations	h-index	g-index
151 all daga	151	151	14944
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood, 2013, 122, 872-884.	0.6	1,743
2	A Double-Blind, Placebo-Controlled Trial of Ruxolitinib for Myelofibrosis. New England Journal of Medicine, 2012, 366, 799-807.	13.9	1,738
3	Chronic Myeloid Leukemia: An Update of Concepts and Management Recommendations of European LeukemiaNet. Journal of Clinical Oncology, 2009, 27, 6041-6051.	0.8	1,188
4	The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood, 2005, 105, 2640-2653.	0.6	1,137
5	Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood, 2006, 108, 28-37.	0.6	1,117
6	Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. New England Journal of Medicine, 2017, 376, 917-927.	13.9	926
7	Functional genomic landscape of acute myeloid leukaemia. Nature, 2018, 562, 526-531.	13.7	907
8	Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. Journal of Clinical Investigation, 2011, 121, 396-409.	3.9	661
9	The Presence of Typical and Atypical BCR-ABL Fusion Genes in Leukocytes of Normal Individuals: Biologic Significance and Implications for the Assessment of Minimal Residual Disease. Blood, 1998, 92, 3362-3367.	0.6	413
10	Ponatinib efficacy and safety in Philadelphia chromosome–positive leukemia: final 5-year results of the phase 2 PACE trial. Blood, 2018, 132, 393-404.	0.6	392
11	Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)–based mutagenesis screen: high efficacy of drug combinations. Blood, 2006, 108, 2332-2338.	0.6	368
12	Multicenter Independent Assessment of Outcomes in Chronic Myeloid Leukemia Patients Treated With Imatinib. Journal of the National Cancer Institute, 2011, 103, 553-561.	3.0	362
13	International Randomized Study of Interferon Vs STI571 (IRIS) 8-Year Follow up: Sustained Survival and Low Risk for Progression or Events in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CML-CP) Treated with Imatinib Blood, 2009, 114, 1126-1126.	0.6	358
14	Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia: Results From the Randomized BFORE Trial. Journal of Clinical Oncology, 2018, 36, 231-237.	0.8	356
15	Tyrosine Kinase Inhibitor–Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. Journal of Clinical Oncology, 2015, 33, 4210-4218.	0.8	355
16	High-sensitivity detection of BCR-ABL kinase domain mutations in imatinib-naive patients: correlation with clonal cytogenetic evolution but not response to therapy. Blood, 2005, 106, 2128-2137.	0.6	297
17	BCR-ABL1 Compound Mutations Combining Key Kinase Domain Positions Confer Clinical Resistance to Ponatinib in Ph Chromosome-Positive Leukemia. Cancer Cell, 2014, 26, 428-442.	7.7	292
18	Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nature Reviews Cancer, 2012, 12, 513-526.	12.8	260

#	Article	IF	CITATIONS
19	TNFα facilitates clonal expansion of JAK2V617F positive cells in myeloproliferative neoplasms. Blood, 2011, 118, 6392-6398.	0.6	227
20	CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood, 2010, 115, 5232-5240.	0.6	216
21	Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncology, The, 2016, 17, 612-621.	5.1	214
22	Kinase Domain Mutants of Bcr-Abl Exhibit Altered Transformation Potency, Kinase Activity, and Substrate Utilization, Irrespective of Sensitivity to Imatinib. Molecular and Cellular Biology, 2006, 26, 6082-6093.	1.1	192
23	BCR-ABL1 compound mutations in tyrosine kinase inhibitor–resistant CML: frequency and clonal relationships. Blood, 2013, 121, 489-498.	0.6	187
24	A randomized trial of dasatinib 100 mg versus imatinib 400 mg in newly diagnosed chronic-phase chronic myeloid leukemia. Blood, 2012, 120, 3898-3905.	0.6	154
25	The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis. Blood, 2015, 126, 1551-1554.	0.6	151
26	Chronic Myeloid Leukemia, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1385-1415.	2.3	147
27	Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood, 2012, 119, 5621-5631.	0.6	138
28	Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell, 2019, 36, 431-443.e5.	7.7	137
29	Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and theÂDevelopment of Next Generation ABL Kinase Inhibitors. Hematology/Oncology Clinics of North America, 2017, 31, 589-612.	0.9	125
30	Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia, 2015, 29, 586-597.	3.3	111
31	Mutations in G protein \hat{l}^2 subunits promote transformation and kinase inhibitor resistance. Nature Medicine, 2015, 21, 71-75.	15.2	106
32	Precision medicine treatment in acute myeloid leukemia using prospective genomic profiling: feasibility and preliminary efficacy of the Beat AML Master Trial. Nature Medicine, 2020, 26, 1852-1858.	15.2	104
33	Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood, 2021, 138, 2042-2050.	0.6	95
34	Structural insight into selectivity and resistance profiles of ROS1 tyrosine kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5381-90.	3.3	93
35	Proposed diagnostic criteria for classical chronic myelomonocytic leukemia (CMML), CMML variants and pre-CMML conditions. Haematologica, 2019, 104, 1935-1949.	1.7	93
36	Chronic myeloid leukemia: reminiscences and dreams. Haematologica, 2016, 101, 541-558.	1.7	92

#	Article	IF	CITATIONS
37	Compound mutations in BCR-ABL1 are not major drivers of primary or secondary resistance to ponatinib in CP-CML patients. Blood, 2016, 127, 703-712.	0.6	87
38	SGX393 inhibits the CML mutant Bcr-Abl ^{T315I} and preempts <i>in vitro</i> resistance when combined with nilotinib or dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5507-5512.	3.3	84
39	Efficacy and safety of avapritinib in advanced systemic mastocytosis: interim analysis of the phase 2 PATHFINDER trial. Nature Medicine, 2021, 27, 2192-2199.	15.2	79
40	Safety and efficacy of avapritinib in advanced systemic mastocytosis: the phase 1 EXPLORER trial. Nature Medicine, 2021, 27, 2183-2191.	15.2	78
41	Clonal Cytogenetic Abnormalities in Philadelphia Chromosome Negative Cells in Chronic Myeloid Leukemia Patients Treated with Imatinib. Leukemia and Lymphoma, 2004, 45, 2197-2203.	0.6	71
42	Chronic Myeloid Leukemia: Modern therapies, current challenges and future directions. Blood Reviews, 2021, 49, 100825.	2.8	62
43	NCCN Guidelines Insights: Chronic Myeloid Leukemia, Version 1.2017. Journal of the National Comprehensive Cancer Network: JNCCN, 2016, 14, 1505-1512.	2.3	57
44	miR-155 promotes FLT3-ITD–induced myeloproliferative disease through inhibition of the interferon response. Blood, 2017, 129, 3074-3086.	0.6	57
45	Imatinib 800Âmg daily induces deeper molecular responses than imatinib 400Âmg daily: results of <scp>SWOG</scp> S0325, an intergroup randomized <scp>PHASE II</scp> trial in newly diagnosed chronic phase chronic myeloid leukaemia. British Journal of Haematology, 2014, 164, 223-232.	1.2	56
46	Special considerations in the management of adult patients with acute leukaemias and myeloid neoplasms in the COVID-19 era: recommendations from a panel of international experts. Lancet Haematology,the, 2020, 7, e601-e612.	2.2	56
47	Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood, 2019, 134, 867-879.	0.6	55
48	Chronic Myelogenous Leukemia, Version 1.2015. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 1590-1610.	2.3	49
49	Long-Term Follow-up of Ponatinib Efficacy and Safety in the Phase 2 PACE Trial. Blood, 2014, 124, 3135-3135.	0.6	43
50	shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance. Blood, 2015, 125, 1772-1781.	0.6	41
51	Systemic Mastocytosis, Version 2.2019, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network: JNCCN, 2018, 16, 1500-1537.	2.3	41
52	Autocrine Tnf signaling favors malignant cells in myelofibrosis in a Tnfr2-dependent fashion. Leukemia, 2018, 32, 2399-2411.	3.3	39
53	Development of an Effective Therapy for Chronic Myelogenous Leukemia. Cancer Journal (Sudbury,) Tj ETQq1	1 0.784314 1.0	rgBT /Overloc
54	SIRT5 Is a Druggable Metabolic Vulnerability in Acute Myeloid Leukemia. Blood Cancer Discovery, 2021,	2.6	37

2, 266-287.

#	Article	IF	CITATIONS
55	Combined targeting of STAT3 and STAT5: a novel approach to overcome drug resistance in chronic myeloid leukemia. Haematologica, 2017, 102, 1519-1529.	1.7	36
56	Imatinib is not a potent anti-SARS-CoV-2 drug. Leukemia, 2020, 34, 3085-3087.	3.3	36
57	Retrospective analysis of arterial occlusive events in the PACE trial by an independent adjudication committee. Journal of Hematology and Oncology, 2022, 15, 1.	6.9	33
58	Curing CML with imatinib—a dream come true?. Nature Reviews Clinical Oncology, 2011, 8, 127-128.	12.5	31
59	Persistence of Drug-Resistant Leukemic Stem Cells and Impaired NK Cell Immunity in CML Patients Depend on <i>MIR300</i> Antiproliferative and PP2A-Activating Functions. Blood Cancer Discovery, 2020, 1, 48-67.	2.6	30
60	Epic: A Phase 3 Trial of Ponatinib Compared with Imatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia in Chronic Phase (CP-CML). Blood, 2014, 124, 519-519.	0.6	30
61	The transcriptome of CMML monocytes is highly inflammatory and reflects leukemia-specific and age-related alterations. Blood Advances, 2019, 3, 2949-2961.	2.5	29
62	Identification and Characterization of AES-135, a Hydroxamic Acid-Based HDAC Inhibitor That Prolongs Survival in an Orthotopic Mouse Model of Pancreatic Cancer. Journal of Medicinal Chemistry, 2019, 62, 2651-2665.	2.9	28
63	Bosutinib (BOS) Versus Imatinib for Newly Diagnosed Chronic Phase (CP) Chronic Myeloid Leukemia (CML): Final 5-Year Results from the Bfore Trial. Blood, 2020, 136, 41-42.	0.6	27
64	Persistent LYN Signaling in Imatinib-Resistant, BCR-ABL–Independent Chronic Myelogenous Leukemia. Journal of the National Cancer Institute, 2008, 100, 908-909.	3.0	26
65	Phase 1/2 trial of glasdegib in patients with primary or secondary myelofibrosis previously treated with ruxolitinib. Leukemia Research, 2019, 79, 38-44.	0.4	25
66	JAK2 ex13InDel drives oncogenic transformation and is associated with chronic eosinophilic leukemia and polycythemia vera. Blood, 2019, 134, 2388-2398.	0.6	25
67	Nuclear–Cytoplasmic Transport Is a Therapeutic Target in Myelofibrosis. Clinical Cancer Research, 2019, 25, 2323-2335.	3.2	24
68	Individualizing kinase-targeted cancer therapy: the paradigm of chronic myeloid leukemia. Genome Biology, 2014, 15, 461.	3.8	23
69	Disarming an Electrophilic Warhead: Retaining Potency in Tyrosine Kinase Inhibitor (TKI)â€Resistant CML Lines While Circumventing Pharmacokinetic Liabilities. ChemMedChem, 2016, 11, 850-861.	1.6	23
70	KIT Signaling Governs Differential Sensitivity of Mature and Primitive CML Progenitors to Tyrosine Kinase Inhibitors. Cancer Research, 2013, 73, 5775-5786.	0.4	22
71	BCR-ABL1 promotes leukemia by converting p27 into a cytoplasmic oncoprotein. Blood, 2014, 124, 3260-3273.	0.6	20
72	Molecular monitoring in CML and the prospects for treatment-free remissions. Hematology American Society of Hematology Education Program, 2015, 2015, 257-263.	0.9	20

#	Article	IF	CITATIONS
73	A phase II study of the efficacy, safety, and determinants of response to 5-azacitidine (Vidaza®) in patients with chronic myelomonocytic leukemia. Leukemia and Lymphoma, 2016, 57, 2441-2444.	0.6	20
74	Phase 1 Trial of Vodobatinib, a Novel Oral BCR-ABL1 Tyrosine Kinase Inhibitor (TKI): Activity in CML Chronic Phase Patients Failing TKI Therapies Including Ponatinib. Blood, 2020, 136, 51-52.	0.6	20
75	Efficacy and safety of avapritinib in previously treated patients with advanced systemic mastocytosis. Blood Advances, 2022, 6, 5750-5762.	2.5	20
76	Diagnosing and Managing Advanced Chronic Myeloid Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2015, , e381-e388.	1.8	19
77	Pregnancy outcomes in patients treated with bosutinib. International Journal of Hematologic Oncology, 2020, 9, IJH26.	0.7	17
78	Direct Contact With Bone Marrow Stromal Cells Protects CML Progenitors From Imatinib Through Cytoplasmic Stabilization Of β-Catenin. Blood, 2013, 122, 3982-3982.	0.6	17
79	Treating the chronic-phase chronic myeloid leukemia patient: which TKI, when to switch and when to stop?. Expert Review of Hematology, 2017, 10, 659-674.	1.0	16
80	Effective Control of Advance Systemic Mastocytosis with Avapritinib: Mutational Analysis from the Explorer Clinical Study. Blood, 2021, 138, 318-318.	0.6	16
81	Long-term safety review of tyrosine kinase inhibitors in chronic myeloid leukemia - What to look for when treatment-free remission is not an option. Blood Reviews, 2022, 56, 100968.	2.8	16
82	Declaration of Bcr-Abl1 independence. Leukemia, 2020, 34, 2827-2836.	3.3	15
83	Dasatinib response in acute myeloid leukemia is correlated with FLT3/ITD, PTPN11 mutations and a unique gene expression signature. Haematologica, 2020, 105, 2795-2804.	1.7	15
84	Avapritinib, a Potent and Selective Inhibitor of KIT D816V, Improves Symptoms of Advanced Systemic Mastocytosis (AdvSM): Analyses of Patient Reported Outcomes (PROs) from the Phase 1 (EXPLORER) Study Using the (AdvSM) Symptom Assessment Form (AdvSM-SAF), a New PRO Questionnaire for (AdvSM). Blood, 2018, 132, 351-351.	0.6	15
85	Systematic review and meta-analysis of standard-dose imatinib vs. high-dose imatinib and second generation tyrosine kinase inhibitors for chronic myeloid leukemia. Journal of Cancer Research and Clinical Oncology, 2017, 143, 1311-1318.	1.2	14
86	BCR-ABL1 tyrosine kinase inhibitor K0706 exhibits preclinical activity in Philadelphia chromosome-positive leukemia. Experimental Hematology, 2019, 77, 36-40.e2.	0.2	14
87	CDK4/CDK6 inhibition as a novel strategy to suppress the growth and survival of BCR-ABL1T315I+ clones in TKI-resistant CML. EBioMedicine, 2019, 50, 111-121.	2.7	14
88	Drug-free macromolecular therapeutics induce apoptosis in cells isolated from patients with B cell malignancies with enhanced apoptosis induction by pretreatment with gemcitabine. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 217-225.	1.7	14
89	Initial Report of the Beat AML Umbrella Study for Previously Untreated AML: Evidence of Feasibility and Early Success in Molecularly Driven Phase 1 and 2 Studies. Blood, 2018, 132, 559-559.	0.6	14
90	Trident cold atmospheric plasma blocks three cancer survival pathways to overcome therapy resistance. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14

#	Article	IF	CITATIONS
91	What do kinase inhibition profiles tell us about tyrosine kinase inhibitors used for the treatment of CML?. Leukemia Research, 2012, 36, 253-261.	0.4	13
92	New Strategies in Myeloproliferative Neoplasms: The Evolving Genetic and Therapeutic Landscape. Clinical Cancer Research, 2016, 22, 1037-1047.	3.2	13
93	Cross-Intolerance With Dasatinib Among Imatinib-Intolerant Patients With Chronic Phase Chronic Myeloid Leukemia. Clinical Lymphoma, Myeloma and Leukemia, 2016, 16, 341-349.e1.	0.2	11
94	Precision Medicine in Hematology 2021: Definitions, Tools, Perspectives, and Open Questions. HemaSphere, 2021, 5, e536.	1.2	11
95	Limited efficacy of BMS-911543 in a murine model of Janus kinase 2 V617F myeloproliferative neoplasm. Experimental Hematology, 2015, 43, 537-545.e11.	0.2	10
96	Pure Pathologic Response Is Associated with Improved Overall Survival in Patients with Advanced Systemic Mastocytosis Receiving Avapritinib in the Phase I EXPLORER Study. Blood, 2020, 136, 37-38.	0.6	10
97	Emerging translational science discoveries, clonal approaches, and treatment trends in chronic myeloproliferative neoplasms. Hematological Oncology, 2019, 37, 240-252.	0.8	8
98	Leukemoid reaction in chronic myelomonocytic leukemia patients undergoing surgery: perioperative management recommendations. Blood Advances, 2019, 3, 952-955.	2.5	8
99	Dasatinib overcomes stroma-based resistance to the FLT3 inhibitor quizartinib using multiple mechanisms. Leukemia, 2020, 34, 2981-2991.	3.3	8
100	Phenotypic characterization of leukemia-initiating stem cells in chronic myelomonocytic leukemia. Leukemia, 2021, 35, 3176-3187.	3.3	8
101	Asciminib, a Specific Allosteric BCR-ABL1 Inhibitor, in Patients with Chronic Myeloid Leukemia Carrying the T315I Mutation in a Phase 1 Trial. Blood, 2018, 132, 792-792.	0.6	8
102	Ponatinib Efficacy and Safety in Patients with the T315I Mutation: Long-Term Follow-up of Phase 1 and Phase 2 (PACE) Trials. Blood, 2014, 124, 4552-4552.	0.6	8
103	Efficacy and Safety Following Dose Reduction of Bosutinib or Imatinib in Patients with Newly Diagnosed Chronic Myeloid Leukemia: Analysis of the Phase 3 BFORE Trial. Blood, 2018, 132, 3005-3005.	0.6	7
104	MS4A3: A New Player in Leukemic Stem Cell Survival in Chronic Myeloid Leukemia. Blood, 2016, 128, 934-934.	0.6	7
105	MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common β-chain cytokine receptor endocytosis. Blood, 2022, 139, 761-778.	0.6	7
106	Coordinated inhibition of nuclear export and Bcr-Abl1 selectively targets chronic myeloid leukemia stem cells. Leukemia, 2020, 34, 1679-1683.	3.3	6
107	Pregnancy Outcomes in Patients Treated with Bosutinib. Blood, 2018, 132, 1729-1729.	0.6	6
108	Response Monitoring, Tolerability, and Effectiveness of Imatinib Treatment for Chronic Myeloid Leukemia in a Retrospective Research Database. Journal of the National Comprehensive Cancer Network: JNCCN, 2014, 12, 1113-1121.	2.3	6

#	Article	IF	CITATIONS
109	Minimal Residual Disease Eradication in CML: Does It Really Matter?. Current Hematologic Malignancy Reports, 2017, 12, 495-505.	1.2	5
110	Bosutinib or Imatinib in Older Vs Younger Patients with Newly Diagnosed Chronic Myeloid Leukemia in the Phase 3 BFORE Trial. Blood, 2018, 132, 1734-1734.	0.6	5
111	Phase 2 Study of Ruxolitinib in Patients with Chronic Neutrophilic Leukemia or Atypical Chronic Myeloid Leukemia. Blood, 2018, 132, 350-350.	0.6	5
112	A Phase 2 Study to Evaluate the Efficacy and Safety of Selinexor in Patients with Myelofibrosis Refractory or Intolerant to JAK Inhibitors. Blood, 2021, 138, 143-143.	0.6	5
113	Ongoing clonal evolution in chronic myelomonocytic leukemia on hypomethylating agents: a computational perspective. Leukemia, 2018, 32, 2049-2054.	3.3	4
114	ddeeper Than Deep: Can ddPCR Predict Successful Imatinib Cessation?. Clinical Cancer Research, 2019, 25, 6561-6563.	3.2	4
115	Genetic complexity of chronic myelomonocytic leukemia. Leukemia and Lymphoma, 2021, 62, 1031-1045.	0.6	4
116	GNB1 Activating Mutations Promote Myeloid and Lymphoid Neoplasms Targetable By Combined PI3K/mTOR Inhibition. Blood, 2014, 124, 3567-3567.	0.6	3
117	Use of dasatinib dose-reduction periods to remedy poor surgical wound healing in Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia and Lymphoma, 2020, 61, 3507-3510.	0.6	2
118	Imatinib, cheese and migraines. Leukemia and Lymphoma, 2021, 62, 746-748.	0.6	2
119	Eradicating residual chronic myeloid leukaemia: basic research lost in translation. Lancet Haematology,the, 2021, 8, e101-e104.	2.2	2
120	MS4A3 Improves Imatinib Response and Survival in BCR-ABL1 Primary TKI Resistance and in Blastic Transformation of Chronic Myeloid Leukemia. Blood, 2015, 126, 14-14.	0.6	2
121	Circulating Cytokines and Markers of Iron Metabolism in Myelofibrosis Patients Treated with Momelotininb: Correlatives from the Ym-387-II Study. Blood, 2015, 126, 1600-1600.	0.6	2
122	Carfilzomib Enhances the Suppressive Effect of Ruxolitinib in Myelofibrosis. Cancers, 2021, 13, 4863.	1.7	1
123	Femoral Heads from Total Hip Arthroplasty as a Source of Adult Hematopoietic Cells. Acta Haematologica, 2021, 144, 458-464.	0.7	1
124	Phenotypic Characterization of Leukemia-Initiating Stem Cells in Chronic Myelomonocytic Leukemia (CMML). Blood, 2019, 134, 4223-4223.	0.6	1
125	High-Resolution Analysis of the Relationship Between Dose and Molecular Response in CP-CML Patients Treated with Ponatinib or Imatinib. Blood, 2014, 124, 3153-3153.	0.6	1
126	Achieving Early Landmark Response Is Predictive of Outcomes in Heavily Pretreated Patients with Chronic Phase Chronic Myeloid Leukemia (CP-CML) Treated with Ponatinib. Blood, 2014, 124, 518-518.	0.6	1

#	Article	IF	CITATIONS
127	Similar expression profiles in CD34+ cells from chronic phase chronic myeloid leukemia patients with and without deep molecular responses to nilotinib. Oncotarget, 2018, 9, 17889-17894.	0.8	1
128	Drug-Free Macromolecular Therapeutics Induce Apoptosis in Cells Isolated from Patients with B Cell Malignancies with Enhanced Apoptosis Induction By Pretreatment with Gemcitabine. Blood, 2018, 132, 4426-4426.	0.6	1
129	Disease Characteristics and Treatment of Adult Langerhans Cell Histiocytosis: A Single Center Experience. Blood, 2018, 132, 4315-4315.	0.6	1
130	A 3-Part, Phase 2 Study of Bezuclastinib (CGT9486), an Oral, Selective, and Potent KIT D816V Inhibitor, in Adult Patients with Nonadvanced Systemic Mastocytosis (NonAdvSM). Blood, 2021, 138, 3642-3642.	0.6	1
131	No advantage of Imatinib in combination with hydroxyurea over Imatinib monotherapy: a study of the East German Study Group (OSHO) and the German CML study group. Leukemia and Lymphoma, 2020, 61, 2821-2830.	0.6	0
132	Limited Efficacy of BMS-911543 in a Murine Model of JAK2V617F Myeloproliferative Neoplasm. Blood, 2014, 124, 5572-5572.	0.6	0
133	Effect of a TNFα Blocker and Peginfa on Polycythemia Vera Clonal Hematopoiesis and Suppressed Normal Dormant Hematopoiesis. Blood, 2014, 124, 1820-1820.	0.6	0
134	Patients' Perspectives on the Definition of Cure in Chronic Myeloid Leukemia: A US Based Survey. Blood, 2018, 132, 5843-5843.	0.6	0
135	Combining Dasatinib and AC220 Reduces Stroma-Based pSTAT5Y694 in FLT3-ITD+ AML and Overcomes FLT3 TKI Resistance. Blood, 2018, 132, 2641-2641.	0.6	0
136	Synergistic Effect of Imatinib and Ruxolitinib in a Patient with JAK2V617F positive Myelofibrosis and Concomitant BCR-ABL1 positive Chronic Myeloid Leukemia. Blood, 2018, 132, 5482-5482.	0.6	0
137	Comorbidities Are Major Drivers of Overall Survival of Chronic Myelomonocytic Leukemia. Blood, 2018, 132, 5521-5521.	0.6	0
138	Molecular Alterations in Chronic Myelomonocytic Leukemia Monocytes: Transcriptional and Methylation Profiling. Blood, 2018, 132, 3889-3889.	0.6	0
139	Genotypic Representation of Myelodysplastic/Myeloproliferative Neoplasms in Nrg, Nrg-3GS and Srg-W41 Mice with Transgenic Expression of Human Cytokines. Blood, 2018, 132, 2038-2038.	0.6	0