List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3825569/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—a multinational observational study by the European Confederation of Medical Mycology. Clinical Microbiology and Infection, 2022, 28, 580-587.	6.0	133
2	Heterogeneity in the transcriptional response of the human pathogen <i>Aspergillus fumigatus</i> to the antifungal agent caspofungin. Genetics, 2022, 220, .	2.9	15
3	SAKrificing an Essential Stress-Sensing Pathway Improves Aspergillus fumigatus Germination. MSphere, 2022, 7, e0001022.	2.9	0
4	Chromatin profiling reveals heterogeneity in clinical isolates of the human pathogen Aspergillus fumigatus. PLoS Genetics, 2022, 18, e1010001.	3.5	11
5	Regulation of gliotoxin biosynthesis and protection in Aspergillus species. PLoS Genetics, 2022, 18, e1009965.	3.5	16
6	Inadvertent Selection of a Pathogenic Fungus Highlights Areas of Concern in Human Clinical Practices. Journal of Fungi (Basel, Switzerland), 2022, 8, 157.	3.5	0
7	The Caspofungin Paradoxical Effect is a Tolerant "Eagle Effect―in the Filamentous Fungal Pathogen <i>Aspergillus fumigatus</i> . MBio, 2022, 13, e0044722.	4.1	5
8	Synergistic Antifungal Activity of Synthetic Peptides and Antifungal Drugs against Candida albicans and C. parapsilosis Biofilms. Antibiotics, 2022, 11, 553.	3.7	5
9	Examination of Genome-Wide Ortholog Variation in Clinical and Environmental Isolates of the Fungal Pathogen Aspergillus fumigatus. MBio, 2022, 13, .	4.1	8
10	Novel Biological Functions of the NsdC Transcription Factor in Aspergillus fumigatus. MBio, 2021, 12, .	4.1	10
11	Altered expression of genes related to innate antifungal immunity in the absence of galectin-3. Virulence, 2021, 12, 981-988.	4.4	2
12	Verapamil inhibits efflux pumps in <i>Candida albicans</i> , exhibits synergism with fluconazole, and increases survival of <i>Galleria mellonella</i> . Virulence, 2021, 12, 231-243.	4.4	7
13	Genetic Interactions Between Aspergillus fumigatus Basic Leucine Zipper (bZIP) Transcription Factors AtfA, AtfB, AtfC, and AtfD. Frontiers in Fungal Biology, 2021, 2, .	2.0	16
14	Transcriptional Control of the Production of Aspergillus fumigatus Conidia-Borne Secondary Metabolite Fumiquinazoline C Important for Phagocytosis Protection. Genetics, 2021, 218, .	2.9	1
15	The Heat Shock Transcription Factor HsfA Is Essential for Thermotolerance and Regulates Cell Wall Integrity in Aspergillus fumigatus. Frontiers in Microbiology, 2021, 12, 656548.	3.5	14
16	Unraveling Caspofungin Resistance in Cryptococcus neoformans. MBio, 2021, 12, .	4.1	3
17	Fungal pathogenesis: A new venom. Current Biology, 2021, 31, R391-R394.	3.9	1
18	Population genomic analysis of <i>Cryptococcus</i> Brazilian isolates reveals an African type subclade distribution. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	7

#	Article	IF	CITATIONS
19	An evolutionary genomic approach reveals both conserved and species-specific genetic elements related to human disease in closely related <i>Aspergillus</i> fungi. Genetics, 2021, 218, .	2.9	18
20	Fungal Polysaccharides Promote Protective Immunity. Trends in Microbiology, 2021, 29, 379-381.	7.7	7
21	Enzymatic diversity of filamentous fungi isolated from forest soil incremented by sugar cane solid waste. Environmental Technology (United Kingdom), 2021, , 1-10.	2.2	1
22	Nutrient sensing and acquisition in fungi: mechanisms promoting pathogenesis in plant and human hosts. Fungal Biology Reviews, 2021, 36, 1-14.	4.7	16
23	Aspergillus fumigatus Acetate Utilization Impacts Virulence Traits and Pathogenicity. MBio, 2021, 12, e0168221.	4.1	10
24	Screening of Chemical Libraries for New Antifungal Drugs against Aspergillus fumigatus Reveals Sphingolipids Are Involved in the Mechanism of Action of Miltefosine. MBio, 2021, 12, e0145821.	4.1	12
25	Aspergillus Fumigatus ZnfA, a Novel Zinc Finger Transcription Factor Involved in Calcium Metabolism and Caspofungin Tolerance. Frontiers in Fungal Biology, 2021, 2, .	2.0	Ο
26	Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. Frontiers in Fungal Biology, 2021, 2, .	2.0	2
27	Genomic and Phenotypic Analysis of COVID-19-Associated Pulmonary Aspergillosis Isolates of Aspergillus fumigatus. Microbiology Spectrum, 2021, 9, e0001021.	3.0	31
28	Carbon Catabolite Repression in Filamentous Fungi Is Regulated by Phosphorylation of the Transcription Factor CreA. MBio, 2021, 12, .	4.1	41
29	Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathogens, 2021, 17, e1010073.	4.7	44
30	Putative Membrane Receptors Contribute to Activation and Efficient Signaling of Mitogen-Activated Protein Kinase Cascades during Adaptation of Aspergillus fumigatus to Different Stressors and Carbon Sources. MSphere, 2020, 5, .	2.9	15
31	Aspergillus fumigatus G-Protein Coupled Receptors GprM and GprJ Are Important for the Regulation of the Cell Wall Integrity Pathway, Secondary Metabolite Production, and Virulence. MBio, 2020, 11, .	4.1	11
32	The Aspergillus fumigatus transcription factor RglT is important for gliotoxin biosynthesis and self-protection, and virulence. PLoS Pathogens, 2020, 16, e1008645.	4.7	27
33	New Opportunities for Modern Fungal Biology. Frontiers in Fungal Biology, 2020, 1, .	2.0	1
34	Draft Genome Sequences of Four <i>Aspergillus</i> Section <i>Fumigati</i> Clinical Strains. Microbiology Resource Announcements, 2020, 9, .	0.6	4
35	The High Osmolarity Glycerol Mitogen-Activated Protein Kinase regulates glucose catabolite repression in filamentous fungi. PLoS Genetics, 2020, 16, e1008996.	3.5	15
36	Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence Across <i>Aspergillus</i> Species. Genetics, 2020, 216, 481-497.	2.9	50

#	Article	IF	CITATIONS
37	Extracellular Vesicles from Aspergillus flavus Induce M1 Polarization <i>In Vitro</i> . MSphere, 2020, 5, .	2.9	46
38	Genomic and Phenotypic Heterogeneity of Clinical Isolates of the Human Pathogens Aspergillus fumigatus, Aspergillus lentulus, and Aspergillus fumigatiaffinis. Frontiers in Genetics, 2020, 11, 459.	2.3	44
39	Phosphoproteomics of Aspergillus fumigatus Exposed to the Antifungal Drug Caspofungin. MSphere, 2020, 5, .	2.9	9
40	Gliotoxin, a Known Virulence Factor in the Major Human Pathogen Aspergillus fumigatus, Is Also Biosynthesized by Its Nonpathogenic Relative <i>Aspergillus fischeri</i> . MBio, 2020, 11, .	4.1	32
41	Aspergillus fumigatus Transcription Factors Involved in the Caspofungin Paradoxical Effect. MBio, 2020, 11, .	4.1	29
42	Evolving moldy murderers: Aspergillus section Fumigati as a model for studying the repeated evolution of fungal pathogenicity. PLoS Pathogens, 2020, 16, e1008315.	4.7	40
43	Pathogenic Allodiploid Hybrids of Aspergillus Fungi. Current Biology, 2020, 30, 2495-2507.e7.	3.9	39
44	The Cell Wall Integrity Pathway Contributes to the Early Stages of <i>Aspergillus fumigatus</i> Asexual Development. Applied and Environmental Microbiology, 2020, 86, .	3.1	20
45	Nutritional factors modulating plant and fruit susceptibility to pathogens: BARD workshop, Haifa, Israel, February 25–26, 2018. Phytoparasitica, 2020, 48, 317-333.	1.2	Ο
46	The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance. MBio, 2020, 11, .	4.1	27
47	Diversity of Secondary Metabolism in Aspergillus nidulans Clinical Isolates. MSphere, 2020, 5, .	2.9	32
48	Functional Characterization of Clinical Isolates of the Opportunistic Fungal Pathogen Aspergillus nidulans. MSphere, 2020, 5, .	2.9	32
49	Aspergillus fumigatus. Trends in Microbiology, 2020, 28, 594-595.	7.7	14
50	Draft genome sequence of Wickerhamomyces anomalus LBCM1105, isolated from cachaça fermentation. Genetics and Molecular Biology, 2020, 43, e20190122.	1.3	7
51	Title is missing!. , 2020, 16, e1008996.		Ο
52	Title is missing!. , 2020, 16, e1008996.		0
53	Title is missing!. , 2020, 16, e1008996.		0
54	Title is missing!. , 2020, 16, e1008996.		0

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 16, e1008645.		0
56	Title is missing!. , 2020, 16, e1008645.		0
57	Title is missing!. , 2020, 16, e1008645.		Ο
58	Title is missing!. , 2020, 16, e1008645.		0
59	Title is missing!. , 2020, 16, e1008645.		0
60	The Aspergillus fumigatus Mismatch Repair <i>MSH2</i> Homolog Is Important for Virulence and Azole Resistance. MSphere, 2019, 4, .	2.9	19
61	A Robust Phylogenomic Time Tree for Biotechnologically and Medically Important Fungi in the Genera <i>Aspergillus</i> and <i>Penicillium</i> . MBio, 2019, 10, .	4.1	106
62	GPCR-mediated glucose sensing system regulates light-dependent fungal development and mycotoxin production. PLoS Genetics, 2019, 15, e1008419.	3.5	29
63	Nutritional Heterogeneity Among Aspergillus fumigatus Strains Has Consequences for Virulence in a Strain- and Host-Dependent Manner. Frontiers in Microbiology, 2019, 10, 854.	3.5	52
64	Editorial: Advances in the Regulation and Production of Fungal Enzymes by Transcriptomics, Proteomics and Recombinant Strains Design. Frontiers in Bioengineering and Biotechnology, 2019, 7, 157.	4.1	5
65	A Novel Cys2His2 Zinc Finger Homolog of AZF1 Modulates Holocellulase Expression in <i>Trichoderma reesei</i> . MSystems, 2019, 4, .	3.8	32
66	Aspergillus fumigatus High Osmolarity Glycerol Mitogen Activated Protein Kinases SakA and MpkC Physically Interact During Osmotic and Cell Wall Stresses. Frontiers in Microbiology, 2019, 10, 918.	3.5	26
67	Comprehensive Analysis of Aspergillus nidulans PKA Phosphorylome Identifies a Novel Mode of CreA Regulation. MBio, 2019, 10, .	4.1	35
68	Mitogen-Activated Protein Kinase Cross-Talk Interaction Modulates the Production of Melanins in Aspergillus fumigatus. MBio, 2019, 10, .	4.1	56
69	Ploidy Determination in the Pathogenic Fungus Sporothrix spp Frontiers in Microbiology, 2019, 10, 284.	3.5	6
70	The fungal threat to global food security. Fungal Biology, 2019, 123, 555-557.	2.5	67
71	Mapping the Fungal Battlefield: Using in situ Chemistry and Deletion Mutants to Monitor Interspecific Chemical Interactions Between Fungi. Frontiers in Microbiology, 2019, 10, 285.	3.5	35
72	Characterizing the Pathogenic, Genomic, and Chemical Traits of <i>Aspergillus fischeri</i> , a Close Relative of the Major Human Fungal Pathogen <i>Aspergillus fumigatus</i> . MSphere, 2019, 4, .	2.9	42

#	Article	IF	CITATIONS
73	Broad Substrate-Specific Phosphorylation Events Are Associated With the Initial Stage of Plant Cell Wall Recognition in Neurospora crassa. Frontiers in Microbiology, 2019, 10, 2317.	3.5	25
74	Potential of Gallium as an Antifungal Agent. Frontiers in Cellular and Infection Microbiology, 2019, 9, 414.	3.9	28
75	Aspergillus fumigatus calcium-responsive transcription factors regulate cell wall architecture promoting stress tolerance, virulence and caspofungin resistance. PLoS Genetics, 2019, 15, e1008551.	3.5	34
76	Endo-β-1,3-glucanase (GH16 Family) from Trichoderma harzianum Participates in Cell Wall Biogenesis but Is Not Essential for Antagonism Against Plant Pathogens. Biomolecules, 2019, 9, 781.	4.0	23
77	Title is missing!. , 2019, 15, e1008551.		0
78	Title is missing!. , 2019, 15, e1008551.		0
79	Title is missing!. , 2019, 15, e1008551.		0
80	Cachaça yeast strains: alternative starters to produce beer and bioethanol. Antonie Van Leeuwenhoek, 2018, 111, 1749-1766.	1.7	23
81	Characterization of a novel sugar transporter involved in sugarcane bagasse degradation in Trichoderma reesei. Biotechnology for Biofuels, 2018, 11, 84.	6.2	45
82	Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surface, 2018, 1, 43-56.	3.0	20
83	Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nature Microbiology, 2018, 3, 402-414.	13.3	72
84	Overview of carbon and nitrogen catabolite metabolism in the virulence of human pathogenic fungi. Molecular Microbiology, 2018, 107, 277-297.	2.5	68
85	The Influence of Genetic Stability on <i>Aspergillus fumigatus</i> Virulence and Azole Resistance. G3: Genes, Genomes, Genetics, 2018, 8, 265-278.	1.8	14
86	Protein Kinase A and High-Osmolarity Glycerol Response Pathways Cooperatively Control Cell Wall Carbohydrate Mobilization in <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	4.1	33
87	A novel cysteine-rich peptide regulates cell expansion in the tobacco pistil and influences its final size. Plant Science, 2018, 277, 55-67.	3.6	3
88	Biological Roles Played by Sphingolipids in Dimorphic and Filamentous Fungi. MBio, 2018, 9, .	4.1	46
89	The Aspergillus nidulans Pyruvate Dehydrogenase Kinases Are Essential To Integrate Carbon Source Metabolism. G3: Genes, Genomes, Genetics, 2018, 8, 2445-2463.	1.8	23
90	The Genome of a Thermo Tolerant, Pathogenic Albino Aspergillus fumigatus. Frontiers in Microbiology, 2018, 9, 1827.	3.5	12

#	Article	IF	CITATIONS
91	Analyses of the three 1-Cys Peroxiredoxins from Aspergillus fumigatus reveal that cytosolic Prx1 is central to H2O2 metabolism and virulence. Scientific Reports, 2018, 8, 12314.	3.3	52
92	Regulation of <i>Aspergillus nidulans</i> CreA-Mediated Catabolite Repression by the F-Box Proteins Fbx23 and Fbx47. MBio, 2018, 9, .	4.1	70
93	Modifications to the composition of the hyphal outer layer of Aspergillus fumigatus modulates HUVEC proteins related to inflammatory and stress responses. Journal of Proteomics, 2017, 151, 83-96.	2.4	9
94	Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression. Fungal Genetics and Biology, 2017, 102, 4-21.	2.1	36
95	Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biology, 2017, 18, 28.	8.8	417
96	Nutrient Sensing at the Plasma Membrane of Fungal Cells. Microbiology Spectrum, 2017, 5, .	3.0	24
97	Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnology for Biofuels, 2017, 10, 30.	6.2	167
98	Sequence-independent cloning methods for long DNA fragments applied to synthetic biology. Analytical Biochemistry, 2017, 530, 5-8.	2.4	1
99	The <i>Aspergillus fumigatus</i> CrzA Transcription Factor Activates Chitin Synthase Gene Expression during the Caspofungin Paradoxical Effect. MBio, 2017, 8, .	4.1	64
100	The low affinity glucose transporter HxtB is also involved in glucose signalling and metabolism in Aspergillus nidulans. Scientific Reports, 2017, 7, 45073.	3.3	20
101	ploidyNGS: visually exploring ploidy with Next Generation Sequencing data. Bioinformatics, 2017, 33, 2575-2576.	4.1	54
102	<i>AspergillusÂfumigatus</i> protein phosphatase PpzA is involved in iron assimilation, secondary metabolite production, and virulence. Cellular Microbiology, 2017, 19, e12770.	2.1	72
103	Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics, 2017, 18, 501.	2.8	79
104	Genome-wide transcriptome analysis of <i>Aspergillus fumigatus</i> exposed to osmotic stress reveals regulators of osmotic and cell wall stresses that are SakA ^{HOG1} and MpkC dependent. Cellular Microbiology, 2017, 19, e12681.	2.1	52
105	The putative flavin carrier family FlcA-C is important forAspergillus fumigatusvirulence. Virulence, 2017, 8, 797-809.	4.4	10
106	Nutrient Sensing at the Plasma Membrane of Fungal Cells. , 2017, , 417-439.		4
107	The Cell Biology of the Trichosporon-Host Interaction. Frontiers in Cellular and Infection Microbiology, 2017, 7, 118.	3.9	53
108	Editorial: An Omics Perspective on Fungal Infection: Toward Next-Generation Diagnosis and Therapy. Frontiers in Microbiology, 2017, 8, 85.	3.5	1

#	Article	IF	CITATIONS
109	Filamentous fungal carbon catabolite repression supports metabolic plasticity and stress responses essential for disease progression. PLoS Pathogens, 2017, 13, e1006340.	4.7	80
110	Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species. PLoS Biology, 2017, 15, e2003583.	5.6	187
111	A Reliable Assay to Evaluate the Virulence of Aspergillus nidulans Using the Alternative Animal Model Galleria mellonella (Lepidoptera). Bio-protocol, 2017, 7, .	0.4	13
112	Epidemiological and Genomic Landscape of Azole Resistance Mechanisms in Aspergillus Fungi. Frontiers in Microbiology, 2016, 7, 1382.	3.5	153
113	RNAseq reveals hydrophobins that are involved in the adaptation of Aspergillus nidulans to lignocellulose. Biotechnology for Biofuels, 2016, 9, 145.	6.2	43
114	Mitogen activated protein kinases SakA ^{HOG1} and MpkC collaborate for <i>Aspergillus fumigatus</i> virulence. Molecular Microbiology, 2016, 100, 841-859.	2.5	110
115	Identification and characterization of putative xylose and cellobiose transporters in Aspergillus nidulans. Biotechnology for Biofuels, 2016, 9, 204.	6.2	76
116	<i>Aspergillus fumigatus</i> MADS-Box Transcription Factor <i>rlmA</i> Is Required for Regulation of the Cell Wall Integrity and Virulence. G3: Genes, Genomes, Genetics, 2016, 6, 2983-3002.	1.8	83
117	Diverse Regulation of the CreA Carbon Catabolite Repressor in <i>Aspergillus nidulans</i> . Genetics, 2016, 203, 335-352.	2.9	127
118	Dataset of differentially regulated proteins in HUVECs challenged with wild type and UGM1 mutant Aspergillus fumigatus strains. Data in Brief, 2016, 9, 24-31.	1.0	6
119	Expression of Two Novel β-Glucosidases from Chaetomium atrobrunneum in Trichoderma reesei and Characterization of the Heterologous Protein Products. Molecular Biotechnology, 2016, 58, 821-831.	2.4	24
120	Functional characterization of the <scp><i>A</i></scp> <i>spergillus nidulans</i> glucosylceramide pathway reveals that LCB Δ8â€desaturation and C9â€methylation are relevant to filamentous growth, lipid raft localization and <i>Ps</i> d1 defensin activity. Molecular Microbiology, 2016, 102, 488-505.	2.5	34
121	The <i>Aspergillus fumigatus</i> SchA ^{SCH9} kinase modulates SakA ^{HOG1} MAP kinase activity and it is essential for virulence. Molecular Microbiology, 2016, 102, 642-671.	2.5	33
122	Novel homologous lactate transporter improves l-lactic acid production from glycerol in recombinant strains of Pichia pastoris. Microbial Cell Factories, 2016, 15, 158.	4.0	27
123	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
124	The contribution of Aspergillus fumigatus stress responses to virulence and antifungal resistance. Journal of Microbiology, 2016, 54, 243-253.	2.8	76
125	Insights into the plant polysaccharide degradation potential of the xylanolytic yeast <i>Pseudozyma brasiliensis</i> . FEMS Yeast Research, 2016, 16, fov117.	2.3	10
126	Aspergillus nidulans protein kinase A plays an important role in cellulase production. Biotechnology for Biofuels, 2015, 8, 213.	6.2	72

#	Article	IF	CITATIONS
127	Gâ€protein coupled receptorâ€mediated nutrient sensing and developmental control in <scp><i>A</i></scp> <i>spergillus nidulans</i> . Molecular Microbiology, 2015, 98, 420-439.	2.5	31
128	Draft Genome Sequence of Komagataeibacter intermedius Strain AF2, a Producer of Cellulose, Isolated from Kombucha Tea. Genome Announcements, 2015, 3, .	0.8	11
129	The Aspergillus fumigatus pkcAG579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model. PLoS ONE, 2015, 10, e0135195.	2.5	51
130	Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass. PLoS ONE, 2015, 10, e0129275.	2.5	127
131	Pollination triggers female gametophyte development in immature Nicotiana tabacum flowers. Frontiers in Plant Science, 2015, 6, 561.	3.6	13
132	The development of animal infection models and antifungal efficacy assays against clinical isolates of <i>Trichosporon asahii</i> , <i>T. asteroides</i> and <i>T. inkin</i> . Virulence, 2015, 6, 476-486.	4.4	24
133	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66
134	Fetal microchimerism in kidney biopsies of lupus nephritis patients may be associated with a beneficial effect. Arthritis Research and Therapy, 2015, 17, 101.	3.5	12
135	Multiple Phosphatases Regulate Carbon Source-Dependent Germination and Primary Metabolism in Aspergillus nidulans. G3: Genes, Genomes, Genetics, 2015, 5, 857-872.	1.8	25
136	Systematic Global Analysis of Genes Encoding Protein Phosphatases in Aspergillus fumigatus. G3: Genes, Genomes, Genetics, 2015, 5, 1525-1539.	1.8	52
137	<scp>H</scp> igh osmolarity glycerol response <scp>PtcB</scp> phosphatase is important for <scp><i>A</i></scp> <i>spergillus fumigatus</i> virulence. Molecular Microbiology, 2015, 96, 42-54.	2.5	69
138	β-(1→3),(1→6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Applied Microbiology and Biotechnology, 2015, 99, 7893-7906.	3.6	59
139	On and Under the Skin: Emerging Basidiomycetous Yeast Infections Caused by Trichosporon Species. PLoS Pathogens, 2015, 11, e1004982.	4.7	42
140	The Sugarcane Defense Protein SUGARWIN2 Causes Cell Death in Colletotrichum falcatum but Not in Non-Pathogenic Fungi. PLoS ONE, 2014, 9, e91159.	2.5	20
141	The <i>Aspergillus nidulans</i> ATM Kinase Regulates Mitochondrial Function, Glucose Uptake and the Carbon Starvation Response. G3: Genes, Genomes, Genetics, 2014, 4, 49-62.	1.8	30
142	TheAspergillus nidulanssignalling mucinMsbAregulates starvation responses, adhesion and affects cellulase secretion in response to environmental cues. Molecular Microbiology, 2014, 94, 1103-1120.	2.5	23
143	The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Briefings in Functional Genomics, 2014, 13, 456-470.	2.7	50
144	Draft Genome Sequence of Komagataeibacter rhaeticus Strain AF1, a High Producer of Cellulose, Isolated from Kombucha Tea. Genome Announcements, 2014, 2, .	0.8	24

#	Article	IF	CITATIONS
145	Mechanistic Strategies for Catalysis Adopted by Evolutionary Distinct Family 43 Arabinanases. Journal of Biological Chemistry, 2014, 289, 7362-7373.	3.4	21
146	<scp>ChIP</scp> â€seq reveals a role for <scp>CrzA</scp> in the <scp><i>A</i></scp> <i>spergillus fumigatus</i> highâ€osmolarity glycerol response (<scp>HOG</scp>) signalling pathway. Molecular Microbiology, 2014, 94, 655-674.	2.5	60
147	How nutritional status signalling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genetics and Biology, 2014, 72, 48-63.	2.1	69
148	Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reeseiusing high-throughput genomic and proteomic analyses. Biotechnology for Biofuels, 2014, 7, 41.	6.2	131
149	Functional characterization of a xylose transporter in Aspergillus nidulans. Biotechnology for Biofuels, 2014, 7, 46.	6.2	59
150	Biochemical characterization of an endoxylanase from Pseudozyma brasiliensis sp. nov. strain GHG001 isolated from the intestinal tract of Chrysomelidae larvae associated to sugarcane roots. Process Biochemistry, 2014, 49, 77-83.	3.7	21
151	Pseudozyma brasiliensis sp. nov., a xylanolytic, ustilaginomycetous yeast species isolated from an insect pest of sugarcane roots. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2159-2168.	1.7	17
152	The Involvement of the Mid1/Cch1/Yvc1 Calcium Channels in Aspergillus fumigatus Virulence. PLoS ONE, 2014, 9, e103957.	2.5	41
153	Protein Kinase C Overexpression Suppresses Calcineurin-Associated Defects in Aspergillus nidulans and Is Involved in Mitochondrial Function. PLoS ONE, 2014, 9, e104792.	2.5	15
154	Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production. Biotechnology for Biofuels, 2013, 6, 91.	6.2	86
155	Identification of the cell targets important for propolis-induced cell death in Candida albicans. Fungal Genetics and Biology, 2013, 60, 74-86.	2.1	37
156	The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in d-xylose, l-arabinose and steam-exploded sugarcane bagasse. Fungal Genetics and Biology, 2013, 60, 29-45.	2.1	63
157	Aspergillus: Genomics of a Cosmopolitan Fungus. Soil Biology, 2013, , 89-126.	0.8	4
158	Fungal biology in Brazil. Fungal Genetics and Biology, 2013, 60, 1.	2.1	0
159	Transcriptional profiling of Brazilian (i>Saccharomyces cerevisiae strains selected for semi-continuous fermentation of sugarcane must. FEMS Yeast Research, 2013, 13, 277-290.	2.3	23
160	Draft Genome Sequence of <i>Pseudozyma brasiliensis</i> sp. nov. Strain GHG001, a High Producer of Endo-1,4-Xylanase Isolated from an Insect Pest of Sugarcane. Genome Announcements, 2013, 1, .	0.8	17
161	The Genome of Anopheles darlingi , the main neotropical malaria vector. Nucleic Acids Research, 2013, 41, 7387-7400.	14.5	102
162	TLR9 Activation Dampens the Early Inflammatory Response to Paracoccidioides brasiliensis, Impacting Host Survival. PLoS Neglected Tropical Diseases, 2013, 7, e2317.	3.0	18

#	Article	IF	CITATIONS
163	Genetic Bypass of <i>Aspergillus nidulans crzA</i> Function in Calcium Homeostasis. G3: Genes, Genomes, Genetics, 2013, 3, 1129-1141.	1.8	17
164	Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvovaginal Infection. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-18.	1.2	33
165	Functional Characterization of Aspergillus nidulans ypkA, a Homologue of the Mammalian Kinase SGK. PLoS ONE, 2013, 8, e57630.	2.5	24
166	Predicting the Proteins of Angomonas deanei, Strigomonas culicis and Their Respective Endosymbionts Reveals New Aspects of the Trypanosomatidae Family. PLoS ONE, 2013, 8, e60209.	2.5	55
167	Identification of Metabolic Pathways Influenced by the G-Protein Coupled Receptors GprB and GprD in Aspergillus nidulans. PLoS ONE, 2013, 8, e62088.	2.5	21
168	P. brasiliensis Virulence Is Affected by SconC, the Negative Regulator of Inorganic Sulfur Assimilation. PLoS ONE, 2013, 8, e74725.	2.5	15
169	Identification of Glucose Transporters in Aspergillus nidulans. PLoS ONE, 2013, 8, e81412.	2.5	39
170	The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-11.	1.2	56
171	SCI1, the first member of the tissue-specific inhibitors of CDK (TIC) class, is probably connected to the auxin signaling pathway. Plant Signaling and Behavior, 2012, 7, 53-58.	2.4	5
172	Molecular Characterization of the Putative Transcription Factor SebA Involved in Virulence in Aspergillus fumigatus. Eukaryotic Cell, 2012, 11, 518-531.	3.4	45
173	Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis. BMC Complementary and Alternative Medicine, 2012, 12, 194.	3.7	19
174	<i>Sugarwin</i> : A Sugarcane Insect-Induced Gene with Antipathogenic Activity. Molecular Plant-Microbe Interactions, 2012, 25, 613-624.	2.6	31
175	Morphological heterogeneity ofParacoccidioides brasiliensis: relevance of the Rho-like GTPasePbCDC42. Medical Mycology, 2012, 50, 768-774.	0.7	4
176	Molecular characterization of the Aspergillus nidulans fbxA encoding an F-box protein involved in xylanase induction. Fungal Genetics and Biology, 2012, 49, 130-140.	2.1	29
177	<i>Aspergillus fumigatus</i> mitochondrial electron transport chain mediates oxidative stress homeostasis, hypoxia responses and fungal pathogenesis. Molecular Microbiology, 2012, 84, 383-399.	2.5	84
178	Aspergillus fumigatus calcineurin interacts with a nucleoside diphosphate kinase. Microbes and Infection, 2012, 14, 922-929.	1.9	16
179	Morphogenesis in Paracoccidioides brasiliensis. Topics in Current Genetics, 2012, , 163-196.	0.7	0
180	Functional Characterization of an Aspergillus fumigatus Calcium Transporter (PmcA) that Is Essential for Fungal Infection. PLoS ONE, 2012, 7, e37591.	2.5	48

#	Article	IF	CITATIONS
181	Gene Disruption in Aspergillus fumigatus Using a PCR-Based Strategy and In Vivo Recombination in Yeast. Methods in Molecular Biology, 2012, 845, 99-118.	0.9	52
182	The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Molecular Microbiology, 2012, 83, 1162-1177.	2.5	40
183	Farnesol-induced cell death in the filamentous fungus <i>Aspergillus nidulans</i> . Biochemical Society Transactions, 2011, 39, 1544-1548.	3.4	16
184	Stigma/style cell cycle inhibitor 1 (SCI1), a tissueâ€specific cell cycle regulator that controls upper pistil development. New Phytologist, 2011, 190, 882-895.	7.3	17
185	Scientific challenges of bioethanol production in Brazil. Applied Microbiology and Biotechnology, 2011, 91, 1267-1275.	3.6	291
186	Transcriptome analysis of Aspergillus niger grown on sugarcane bagasse. Biotechnology for Biofuels, 2011, 4, 40.	6.2	122
187	Molecular biology of the dimorphic fungi Paracoccidioides spp. Fungal Biology Reviews, 2011, 25, 89-97.	4.7	8
188	Involvement of an Alternative Oxidase in Oxidative Stress and Mycelium-to-Yeast Differentiation in Paracoccidioides brasiliensis. Eukaryotic Cell, 2011, 10, 237-248.	3.4	60
189	Molecular Characterization of Propolis-Induced Cell Death in Saccharomyces cerevisiae. Eukaryotic Cell, 2011, 10, 398-411.	3.4	49
190	The Aspergillus nidulans <i>nucA</i> ^{EndoG} Homologue Is Not Involved in Cell Death. Eukaryotic Cell, 2011, 10, 276-283.	3.4	10
191	Comparative Genomic Analysis of Human Fungal Pathogens Causing Paracoccidioidomycosis. PLoS Genetics, 2011, 7, e1002345.	3.5	164
192	Identification of possible targets of the Aspergillus fumigatus CRZ1 homologue, CrzA. BMC Microbiology, 2010, 10, 12.	3.3	58
193	The conserved and divergent roles of carbonic anhydrases in the filamentous fungi <i>Aspergillus fumigatus</i> and <i>Aspergillus nidulans</i> . Molecular Microbiology, 2010, 75, 1372-1388.	2.5	27
194	Involvement of the <i>Aspergillus nidulans</i> protein kinase C with farnesol tolerance is related to the unfolded protein response. Molecular Microbiology, 2010, 78, 1259-1279.	2.5	35
195	The Paracoccidioides brasiliensis gp70 antigen is encoded by a putative member of the flavoproteins monooxygenase family. Fungal Genetics and Biology, 2010, 47, 179-189.	2.1	11
196	The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. Fungal Genetics and Biology, 2010, 47, 1055-1069.	2.1	29
197	Gene expression analysis of <i>Paracoccidioides brasiliensis</i> transition from conidium to yeast cell. Medical Mycology, 2010, 48, 147-154.	0.7	19
198	Review Jasmonates are phytohormones with multiple functions, including plant defense and reproduction. Genetics and Molecular Research, 2010, 9, 484-505.	0.2	180

#	Article	IF	CITATIONS
199	Analysis of the <i>Nicotiana tabacum</i> Stigma/Style Transcriptome Reveals Gene Expression Differences between Wet and Dry Stigma Species Â. Plant Physiology, 2009, 149, 1211-1230.	4.8	65
200	A reliable measure of similarity based on dependency for short time series: an application to gene expression networks. BMC Bioinformatics, 2009, 10, 270.	2.6	1
201	The conserved and divergent roles of carbonic anhydrases in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans. Molecular Microbiology, 2009, 76, 802-802.	2.5	2
202	Analyses of Sexual Reproductive Success in Transgenic and/or Mutant Plants. Journal of Integrative Plant Biology, 2009, 51, 719-726.	8.5	2
203	Transcription regulation of the Pbgp43 gene by nitrogen in the human pathogen Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2009, 46, 85-93.	2.1	9
204	The 2008 update of the Aspergillus nidulans genome annotation: A community effort. Fungal Genetics and Biology, 2009, 46, S2-S13.	2.1	99
205	Functional characterization of the Aspergillus nidulans methionine sulfoxide reductases (msrA and) Tj ETQq1 1 0	.784314 ı 2.1	gBT/Overloci 17
206	Phenotypic analysis of genes whose mRNA accumulation is dependent on calcineurin in Aspergillus fumigatus. Fungal Genetics and Biology, 2009, 46, 791-802.	2.1	21
207	Cdc42p controls yeast-cell shape and virulence of Paracoccidioides brasiliensis. Fungal Genetics and Biology, 2009, 46, 919-926.	2.1	54
208	Mitochondrial function in the yeast form of the pathogenic fungus Paracoccidioides brasiliensis. Journal of Bioenergetics and Biomembranes, 2008, 40, 297-305.	2.3	15
209	Functional characterization of the putative Aspergillus nidulans DNA damage binding protein homologue DdbA. Molecular Genetics and Genomics, 2008, 279, 239-253.	2.1	3
210	Molecular characterization of the Aspergillus fumigatus NCS-1 homologue, NcsA. Molecular Genetics and Genomics, 2008, 280, 483-95.	2.1	11
211	Biological activities from extracts of endophytic fungi isolated fromViguiera arenariaandTithonia diversifolia. FEMS Immunology and Medical Microbiology, 2008, 52, 134-144.	2.7	85
212	Functional characterization of the <i>Aspergillus fumigatus</i> CRZ1 homologue, CrzA. Molecular Microbiology, 2008, 67, 1274-1291.	2.5	166
213	Farnesol induces the transcriptional accumulation of the <i>Aspergillus nidulans</i> Apoptosisâ€Inducing Factor (AIF)â€Iike mitochondrial oxidoreductase. Molecular Microbiology, 2008, 70, 44-59.	2.5	54
214	Functional characterization of the Aspergillus fumigatus PHO80 homologue. Fungal Genetics and Biology, 2008, 45, 1135-1146.	2.1	16
215	Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis. PLoS Pathogens, 2008, 4, e1000154.	4.7	228
216	Genomic Islands in the Pathogenic Filamentous Fungus Aspergillus fumigatus. PLoS Genetics, 2008, 4, e1000046.	3.5	473

#	Article	IF	CITATIONS
217	Genetic Interactions of the <i>Aspergillus nidulans atmA</i> ATM Homolog With Different Components of the DNA Damage Response Pathway. Genetics, 2008, 178, 675-691.	2.9	13
218	Chaetoglobosinas produzidas por Chaetomium globosum, fungo endofÃtico associado a Viguiera robusta Gardn. (Asteraceae). Quimica Nova, 2008, 31, 1680-1685.	0.3	34
219	Functional characterization of the Aspergillus fumigatus calcineurin. Fungal Genetics and Biology, 2007, 44, 219-230.	2.1	122
220	Identification of transcription elements in the 5′ intergenic region shared by LON and MDJ1 heat shock genes from the human pathogen Paracoccidioides brasiliensis. Evaluation of gene expression. Fungal Genetics and Biology, 2007, 44, 347-356.	2.1	22
221	The cAMP pathway is important for controlling the morphological switch to the pathogenic yeast form of <i>Paracoccidioides brasiliensis</i> . Molecular Microbiology, 2007, 65, 761-779.	2.5	34
222	Transcriptome analysis of the Aspergillus nidulans AtmA (ATM, Ataxia-Telangiectasia mutated) null mutant. Molecular Microbiology, 2007, 66, 74-99.	2.5	17
223	Insights in Paracoccidioides brasiliensis Pathogenicity. , 2007, , 241-265.		11
224	Transcriptome analysis and molecular studies on sulfur metabolism in the human pathogenic fungus Paracoccidioides brasiliensis. Molecular Genetics and Genomics, 2006, 276, 450-463.	2.1	27
225	Transcriptome analysis of Aspergillus fumigatus exposed to voriconazole. Current Genetics, 2006, 50, 32-44.	1.7	152
226	Fungal Metabolic Model for Tyrosinemia Type 3: Molecular Characterization of a Gene Encoding a 4-Hydroxy-Phenyl Pyruvate Dioxygenase from Aspergillus nidulans. Eukaryotic Cell, 2006, 5, 1441-1445.	3.4	9
227	The akuB KU80 Mutant Deficient for Nonhomologous End Joining Is a Powerful Tool for Analyzing Pathogenicity in Aspergillus fumigatus. Eukaryotic Cell, 2006, 5, 207-211.	3.4	391
228	Functional Characterization of the Putative Aspergillus nidulans Poly(ADP-Ribose) Polymerase Homolog PrpA. Genetics, 2006, 173, 87-98.	2.9	45
229	Regulation of Hyphal Morphogenesis and the DNA Damage Response by the Aspergillus nidulans ATM Homolog AtmA. Genetics, 2006, 173, 99-109.	2.9	30
230	Microsatellite Analysis of Three Phylogenetic Species of Paracoccidioides brasiliensis. Journal of Clinical Microbiology, 2006, 44, 2153-2157.	3.9	80
231	Transcriptome Analysis of Aspergillus nidulans Exposed to Camptothecin-Induced DNA Damage. Eukaryotic Cell, 2006, 5, 1688-1704.	3.4	26
232	Influence of Chronic Renal Failure on Stereoselective Metoprolol Metabolism in Hypertensive Patients. Journal of Clinical Pharmacology, 2005, 45, 1422-1433.	2.0	10
233	Virulence of Paracoccidioides brasiliensis and gp43 expression in isolates bearing known PbGP43 genotype. Microbes and Infection, 2005, 7, 55-65.	1.9	56
234	The Aspergillus nidulans sldIRAD50 gene interacts with bimEAPC1, a homologue of an an an anaphase-promoting complex subunit. Molecular Microbiology, 2005, 57, 222-237.	2.5	8

#	Article	IF	CITATIONS
235	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	27.8	1,272
236	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	27.8	1,250
237	Genomics of Aspergillus fumigatus. Revista Iberoamericana De Micologia, 2005, 22, 223-228.	0.9	41
238	Genomics of Some Human Dimorphic Fungus. Applied Mycology and Biotechnology, 2005, 5, 301-313.	0.3	0
239	SepBCTF4 Is Required for the Formation of DNA-Damage-Induced UvsCRAD51 Foci in Aspergillus nidulans. Genetics, 2005, 169, 1391-1402.	2.9	10
240	Aspergillus nidulans uvsB ATR and scaA NBS1 Genes Show Genetic Interactions during Recovery from Replication Stress and DNA Damage. Eukaryotic Cell, 2005, 4, 1239-1252.	3.4	10
241	The csnD/csnE Signalosome Genes Are Involved in the Aspergillus nidulans DNA Damage Response. Genetics, 2005, 171, 1003-1015.	2.9	23
242	Transcriptome Analysis of Paracoccidioides brasiliensis Cells Undergoing Mycelium-to-Yeast Transition. Eukaryotic Cell, 2005, 4, 2115-2128.	3.4	131
243	The DNA Damage Response of Filamentous Fungi: Novel Features Associated with a Multicellular Lifestyle. Applied Mycology and Biotechnology, 2005, 5, 117-139.	0.3	1
244	The ergosterol biosynthesis pathway, transporter genes, and azole resistance in <i>Aspergillus fumigatus</i> . Medical Mycology, 2005, 43, 313-319.	0.7	140
245	Occurrence of insertion sequences within the genomes and Tn-like elements of glycopeptide-resistant enterococci isolated in Brazil, and identification of a novel element, IS. International Journal of Medical Microbiology, 2005, 294, 513-519.	3.6	22
246	cDNA cloning and functional expression of KM+, the mannose-binding lectin from Artocarpus integrifolia seeds. Biochimica Et Biophysica Acta - General Subjects, 2005, 1726, 251-260.	2.4	22
247	Identification of an unusual VanA element in glycopeptide-resistantEnterococcus faeciumin Brazil following international transfer of a bone marrow transplant patient. Canadian Journal of Microbiology, 2004, 50, 767-770.	1.7	19
248	In Vitro Evolution of Itraconazole Resistance in Aspergillus fumigatus Involves Multiple Mechanisms of Resistance. Antimicrobial Agents and Chemotherapy, 2004, 48, 4405-4413.	3.2	142
249	Detection and Selection of Microsatellites in the Genome of Paracoccidioides brasiliensis as Molecular Markers for Clinical and Epidemiological Studies. Journal of Clinical Microbiology, 2004, 42, 5007-5014.	3.9	29
250	A Transcript Finishing Initiative for Closing Gaps in the Human Transcriptome. Genome Research, 2004, 14, 1413-1423.	5.5	22
251	TheAspergillus nidulans npkAGene Encodes a Cdc2-Related Kinase That Genetically Interacts With the UvsBATRKinase. Genetics, 2004, 167, 1629-1641.	2.9	19
252	Comparative Genomics of Two Leptospira interrogans Serovars Reveals Novel Insights into Physiology and Pathogenesis. Journal of Bacteriology, 2004, 186, 2164-2172.	2.2	406

#	Article	IF	CITATIONS
253	The Genome Sequence of the Gram-Positive Sugarcane Pathogen Leifsonia xyli subsp. xyli. Molecular Plant-Microbe Interactions, 2004, 17, 827-836.	2.6	119
254	NtWBC1, an ABC transporter gene specifically expressed in tobacco reproductive organs. Journal of Experimental Botany, 2004, 55, 1643-1654.	4.8	24
255	Identification of genes preferentially expressed in the pathogenic yeast phase of Paracoccidioides brasiliensis, using suppression subtraction hybridization and differential macroarray analysis. Molecular Genetics and Genomics, 2004, 271, 667-677.	2.1	67
256	Multi-Copy Suppression of an Aspergillus nidulans Mutant Sensitive to Camptothecin by a Putative Monocarboxylate Transporter. Current Microbiology, 2004, 49, 229-233.	2.2	7
257	Evaluation of fluconazole resistance mechanisms in candida albicans clinical isolates from HIV-infected patients in Brazil. Diagnostic Microbiology and Infectious Disease, 2004, 50, 25-32.	1.8	93
258	Aspergillus nidulans as a model system to characterize the DNA damage response in eukaryotes. Fungal Genetics and Biology, 2004, 41, 428-442.	2.1	65
259	Erratum to "New restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus―[FEMS Immunol. Med. Microbiol. 31 (2001) 15–19]. FEMS Immunology and Medical Microbiology, 2003, 39, 287.	2.7	0
260	Different roles of the Mre11 complex in the DNA damage response in Aspergillus nidulans. Molecular Microbiology, 2003, 48, 1693-1709.	2.5	22
261	Low expression of sodium iodide symporter identifies aggressive thyroid tumors. Cancer Letters, 2003, 200, 85-91.	7.2	49
262	Correction: Mitochondrial DNA Variation in Amerindians. American Journal of Human Genetics, 2003, 72, 1346-1348.	6.2	19
263	Multiple Resistance Mechanisms among Aspergillus fumigatus Mutants with High-Level Resistance to Itraconazole. Antimicrobial Agents and Chemotherapy, 2003, 47, 1719-1726.	3.2	246
264	Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane. Genome Research, 2003, 13, 2725-2735.	5.5	254
265	Expressed Sequence Tag Analysis of the Human Pathogen Paracoccidioides brasiliensis Yeast Phase: Identification of Putative Homologues of Candida albicans Virulence and Pathogenicity Genes. Eukaryotic Cell, 2003, 2, 34-48.	3.4	185
266	Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa. Journal of Bacteriology, 2003, 185, 1018-1026.	2.2	307
267	The generation and utilization of a cancer-oriented representation of the human transcriptome by using expressed sequence tags. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13418-13423.	7.1	105
268	Analysis of Gene Expression in Two Growth States of Xylella fastidiosa and Its Relationship with Pathogenicity. Molecular Plant-Microbe Interactions, 2003, 16, 867-875.	2.6	69
269	Identification of a Topoisomerase I Mutant, <i>scsA1</i> , as an Extragenic Suppressor of a Mutation in <i>scaA</i> NBS1, the Apparent Homolog of Human Nibrin in <i>Aspergillus nidulans</i> . Genetics, 2003, 164, 935-945.	2.9	6
270	Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay. Applied and Environmental Microbiology, 2002, 68, 1351-1357.	3.1	126

#	Article	IF	CITATIONS
271	Quantification of Xylella fastidiosa from Citrus Trees by Real-Time Polymerase Chain Reaction Assay. Phytopathology, 2002, 92, 1048-1054.	2.2	67
272	The DNA Damage Response in Filamentous Fungi. Fungal Genetics and Biology, 2002, 35, 183-195.	2.1	68
273	Systemic lupus erythematosus and microchimerism in autoimmunity. Transplantation Proceedings, 2002, 34, 2951-2952.	0.6	47
274	Mitochondrial Genome Diversity of Native Americans Supports a Single Early Entry of Founder Populations into America. American Journal of Human Genetics, 2002, 71, 187-192.	6.2	93
275	Molecular identification of Paracoccidioides brasiliensis by 5′ nuclease assay. Diagnostic Microbiology and Infectious Disease, 2002, 44, 383-386.	1.8	30
276	A tobacco cDNA reveals two different transcription patterns in vegetative and reproductive organs. Brazilian Journal of Medical and Biological Research, 2002, 35, 861-868.	1.5	3
277	Molecular characterization of ABC transporter-encoding genes in Aspergillus nidulans. Genetics and Molecular Research, 2002, 1, 337-49.	0.2	7
278	Dissecting the sugarcane expressed sequence tag (SUCEST) database: unraveling flower-specific genes. Genetics and Molecular Biology, 2001, 24, 77-84.	1.3	6
279	Sensitivity to camptothecin in Aspergillus nidulans identifies a novel gene, scaA +, related to the cellular DNA damage response. Molecular Genetics and Genomics, 2001, 265, 264-275.	2.1	25
280	New restriction fragment length polymorphism (RFLP) markers forAspergillus fumigatus. FEMS Immunology and Medical Microbiology, 2001, 31, 15-19.	2.7	17
281	The contribution of 700,000 ORF sequence tags to the definition of the human transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12103-12108.	7.1	123
282	New restriction fragment length polymorphism (RFLP) markers for Aspergillus fumigatus. FEMS Immunology and Medical Microbiology, 2001, 31, 15-19.	2.7	0
283	The genome sequence of the plant pathogen Xylella fastidiosa. Nature, 2000, 406, 151-157.	27.8	827
284	Molecular characterization of ubiquitin genes from Aspergillus nidulans: mRNA expression on different stress and growth conditions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1490, 237-244.	2.4	28
285	Tagging of genes involved in multidrug resistance in Aspergillus nidulans. Molecular Genetics and Genomics, 2000, 263, 702-711.	2.4	9
286	Identification of human chromosome 22 transcribed sequences with ORF expressed sequence tags. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 12690-12693.	7.1	70
287	Shotgun sequencing of the human transcriptome with ORF expressed sequence tags. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3491-3496.	7.1	179
288	Identification of homologs of the mammalian P-glycoprotein in the mussel, Perna perna. Marine Environmental Research, 2000, 50, 333.	2.5	1

#	Article	IF	CITATIONS
289	A genomic approach to the understanding of Xylella fastidiosa pathogenicity. Current Opinion in Microbiology, 2000, 3, 459-462.	5.1	50
290	Catalase activity is necessary for heat-shock recovery in Aspergillus nidulans germlings. Microbiology (United Kingdom), 1999, 145, 3229-3234.	1.8	55
291	A tobacco flower-specific gene encodes a polyphenol oxidase. Plant Molecular Biology, 1998, 36, 479-485.	3.9	21
292	Isolation and characterisation of cycloheximide-sensitive mutants of Aspergillus nidulans. Current Genetics, 1998, 33, 60-69.	1.7	10
293	Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions. Genetics and Molecular Biology, 1998, 21, 329-333.	1.3	12
294	Differential Poisoning of Human andAspergillusnidulansDNA Topoisomerase I by Bi- and Terbenzimidazolesâ€. Biochemistry, 1997, 36, 6488-6494.	2.5	19
295	Cloning and Characterization of Trichoderma Harzianum Genes Induced During Growth on Rhizoctonia Solani Cell Walls. Developments in Plant Pathology, 1996, , 133-137.	0.1	0
296	Trichoderma harzianum genes induced during growth on Rhizoctonia solani cell walls. Microbiology (United Kingdom), 1995, 141, 767-774.	1.8	34
297	Molecular and cellular biology of biocontrol by Trichoderma spp Trends in Biotechnology, 1994, 12, 478-482.	9.3	74
298	Sequence analysis and expression studies of a gene encoding a novel serine + alanine-rich protein in Trichoderma harzianum. Gene, 1994, 144, 113-117.	2.2	10
299	A nucleotide substitution in one of the β-tubulin genes of Trichoderma viride confers resistance to the antimitotic drug methyl benzimidazole-2-yl-carbamate. Molecular Genetics and Genomics, 1993, 240, 73-80.	2.4	57
300	Molecular characterization of the proteinaseâ€encoding gene, <i>prb1</i> , related to mycoparasitism by <i>Trichoderma harzianum</i> . Molecular Microbiology, 1993, 8, 603-613.	2.5	235
301	Electrophoretic karyotype and gene assignment to resolved chromosomes of Trichoderma spp Molecular Microbiology, 1993, 7, 515-521.	2.5	34
302	Molecular cloning of the imidazoleglycerolphosphate dehydratase gene of Trichoderma harzianum by genetic complementation in Saccharomyces cerevisiae using a direct expression vector. Molecular Genetics and Genomics, 1992, 234, 481-488.	2.4	16
303	Molecular characterization and regulation of the phosphoglycerate kinase gene from Trichoderma viride. Molecular Microbiology, 1992, 6, 1231-1242.	2.5	36
304	Notes High-efficiency transformation system for the biocontrol agents, Trichoderma spp Molecular Microbiology, 1990, 4, 839-843.	2.5	105
305	Transformation of Trichoderma harzianum by high-voltage electric pulse. Current Genetics, 1990, 17, 169-174.	1.7	71
306	Sequence of theTrichoderma viridephosphoglycerate kinase gene. Nucleic Acids Research, 1990, 18, 6717-6717.	14.5	6

#	Article	IF	CITATIONS
307	Variação espacial e temporal da irradiância solar e da razão entre vermelho e vermelho - extremo que chegam ao solo em diferentes microhabitats na região de Tucuruà PA. Acta Amazonica, 1989, 19, 243-248.	0.7	3
308	Germinação natural de 10 leguminosas arbóreas da Amazônia - I. Acta Amazonica, 1988, 18, 9-26.	0.7	15
309	Estudos sobre a germinação de sementes de marupã (Simaruba amara Aubl.). I. Composição quÃmica e curva de embebiA§Ã£o das sementes; germinação em diferentes temperaturas Acta Amazonica, 1986, 16, 383-392.	0.7	3
310	Gene expression analysis of Paracoccidioides brasiliensis transition from conidium to yeast cell. Medical Mycology, 0, , 1-9.	0.7	2
311	Extensive Non-Coding Sequence Divergence Between the Major Human Pathogen Aspergillus fumigatus and its Relatives. Frontiers in Fungal Biology, 0, 3, .	2.0	3