Alexey Voinov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3825132/publications.pdf

Version: 2024-02-01

3312 12303 57,024 204 69 184 citations h-index g-index papers 219 219 219 41686 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The value of the world's ecosystem services and natural capital. Nature, 1997, 387, 253-260.	13.7	15,321
2	A safe operating space for humanity. Nature, 2009, 461, 472-475.	13.7	8,638
3	Changes in the global value of ecosystem services. Global Environmental Change, 2014, 26, 152-158.	3.6	4,101
4	Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecology and Society, 2009, 14, .	1.0	3,867
5	Global estimates of the value of ecosystems and their services in monetary units. Ecosystem Services, 2012, 1, 50-61.	2.3	1,801
6	Twenty years of ecosystem services: How far have we come and how far do we still need to go?. Ecosystem Services, 2017, 28, 1-16.	2.3	1,665
7	Natural Capital and Sustainable Development. Conservation Biology, 1992, 6, 37-46.	2.4	1,194
8	Characterising performance of environmental models. Environmental Modelling and Software, 2013, 40, 1-20.	1.9	1,141
9	Modelling with stakeholdersâ~†. Environmental Modelling and Software, 2010, 25, 1268-1281.	1.9	948
10	Economic and ecological concepts for valuing ecosystem services. Ecological Economics, 2002, 41, 375-392.	2.9	824
11	Quality of life: An approach integrating opportunities, human needs, and subjective well-being. Ecological Economics, 2007, 61, 267-276.	2.9	672
12	Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecological Economics, 2016, 130, 350-355.	2.9	587
13	Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling and Software, 2013, 47, 159-181.	1.9	578
14	Beyond GDP: Measuring and achieving global genuine progress. Ecological Economics, 2013, 93, 57-68.	2.9	550
15	The Value of Coastal Wetlands for Hurricane Protection. Ambio, 2008, 37, 241-248.	2.8	528
16	Payments for ecosystem services: From local to global. Ecological Economics, 2010, 69, 2060-2068.	2.9	527
17	Ecosystem services: Multiple classification systems are needed. Biological Conservation, 2008, 141, 350-352.	1.9	523
18	Development: Time to leave GDP behind. Nature, 2014, 505, 283-285.	13.7	515

#	Article	IF	CITATIONS
19	Modeling Complex Ecological Economic Systems. BioScience, 1993, 43, 545-555.	2.2	435
20	Modelling with stakeholders – Next generation. Environmental Modelling and Software, 2016, 77, 196-220.	1.9	405
21	Defining and predicting sustainability. Ecological Economics, 1995, 15, 193-196.	2.9	386
22	Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecological Economics, 2002, 41, 509-527.	2.9	376
23	Integrated environmental modeling: A vision and roadmap for the future. Environmental Modelling and Software, 2013, 39, 3-23.	1.9	366
24	Overcoming systemic roadblocks to sustainability: The evolutionary redesign of worldviews, institutions, and technologies. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2483-2489.	3.3	309
25	What is ecological economics?. Ecological Economics, 1989, 1, 1-7.	2.9	305
26	Linking Ecology and Economics for Ecosystem Management. BioScience, 2006, 56, 121.	2.2	305
27	Using Dynamic Modeling to Scope Environmental Problems and Build Consensus. Environmental Management, 1998, 22, 183-195.	1.2	291
28	Valuation and management of wetland ecosystems. Ecological Economics, 1989, 1, 335-361.	2.9	283
29	Tools and methods in participatory modeling: Selecting the right tool for the job. Environmental Modelling and Software, 2018, 109, 232-255.	1.9	257
30	Valuing ecosystem services. Annals of the New York Academy of Sciences, 2010, 1185, 54-78.	1.8	256
31	Modeling the dynamics of the integrated earth system and the value of global ecosystem services using the GUMBO model. Ecological Economics, 2002, 41, 529-560.	2.9	255
32	The evolution of preferences. Ecological Economics, 1998, 24, 193-211.	2.9	251
33	Environmental decision support systems (EDSS) development – Challenges and best practices. Environmental Modelling and Software, 2011, 26, 1389-1402.	1.9	251
34	A review of methods, data, and models to assess changes in the value of ecosystem services from land degradation and restoration. Ecological Modelling, 2016, 319, 190-207.	1.2	247
35	The role of human, social, built, and natural capital in explaining life satisfaction at the country level: Toward a National Well-Being Index (NWI). Ecological Economics, 2006, 58, 119-133.	2.9	244
36	The value of ecosystem services: putting the issues in perspective. Ecological Economics, 1998, 25, 67-72.	2.9	229

#	Article	IF	Citations
37	The ecological economics of land degradation: Impacts on ecosystem service values. Ecological Economics, 2016, 129, 182-192.	2.9	226
38	Lessons for successful participatory watershed modeling: A perspective from modeling practitioners. Ecological Modelling, 2008, 216, 197-207.	1.2	215
39	Modeling Coastal Landscape Dynamics. BioScience, 1990, 40, 91-107.	2.2	212
40	The future value of ecosystem services: Global scenarios and national implications. Ecosystem Services, 2017, 26, 289-301.	2.3	204
41	The Complexities of Agent-Based Modeling Output Analysis. Jasss, 2015, 18, .	1.0	198
42	Model goodness of fit: A multiple resolution procedure. Ecological Modelling, 1989, 47, 199-215.	1.2	194
43	Social Goals and the Valuation of Ecosystem Services. Ecosystems, 2000, 3, 4-10.	1.6	194
44	Progress in integrated assessment and modelling1A Summary of a workshop on Integrated Assessment and Modelling, held at EcoSummit 2000: Integrating the Sciences, Halifax, June 18–22, 2000. See Costanza and Jorgensen (2001) for a further report on Ecosummit.1. Environmental Modelling and Software, 2002, 17, 209-217.	1.9	191
45	†Integronsters', integral and integrated modeling. Environmental Modelling and Software, 2013, 39, 149-158.	1.9	176
46	Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosystem Services, 2020, 43, 101096.	2.3	163
47	Methods to evaluate the performance of spatial simulation models. Ecological Modelling, 1989, 48, 1-18.	1.2	139
48	The authorship structure of "ecosystem services―as a transdisciplinary field of scholarship. Ecosystem Services, 2012, 1, 16-25.	2.3	122
49	Valuing New Jersey's Ecosystem Services and Natural Capital: A Spatially Explicit Benefit Transfer Approach. Environmental Management, 2010, 45, 1271-1285.	1.2	121
50	Patuxent landscape model: integrated ecological economic modeling of a watershed. Environmental Modelling and Software, 1999, 14, 473-491.	1.9	120
51	Optimization methodology for land use patterns using spatially explicit landscape models. Ecological Modelling, 2002, 151, 125-142.	1.2	117
52	INTEGRATED ECOLOGICAL ECONOMIC MODELING OF THE PATUXENT RIVER WATERSHED, MARYLAND. Ecological Monographs, 2002, 72, 203-231.	2.4	115
53	The Value of Ecosystem Services from Giant Panda Reserves. Current Biology, 2018, 28, 2174-2180.e7.	1.8	112
54	Resolution and predictability: An approach to the scaling problem. Landscape Ecology, 1994, 9, 47-57.	1.9	108

#	Article	IF	Citations
55	A new vision for New Orleans and the Mississippi delta: applying ecological economics and ecological engineering. Frontiers in Ecology and the Environment, 2006, 4, 465-472.	1.9	108
56	An initial estimate of the value of ecosystem services in Bhutan. Ecosystem Services, 2013, 3, e11-e21.	2.3	103
57	Extending the supply chain to address sustainability. Journal of Cleaner Production, 2019, 229, 652-666.	4.6	102
58	Visions of Alternative (Unpredictable) Futures and Their Use in Policy Analysis. Ecology and Society, 2000, 4, .	0.9	99
59	An ecological economic simulation model of mountain fynbos ecosystems. Ecological Economics, 1997, 22, 155-169.	2.9	97
60	Demand-side solutions for climate mitigation: Bottom-up drivers of household energy behavior change in the Netherlands and Spain. Energy Research and Social Science, 2020, 62, 101356.	3.0	93
61	Visions, Values, Valuation, and the Need for an Ecological Economics. BioScience, 2001, 51, 459.	2.2	92
62	Dynamic spatial simulation modeling of coastal wetland habitat succession. Ecological Modelling, 1985, 29, 261-281.	1.2	91
63	Ecological economics and sustainable governance of the oceans. Ecological Economics, 1999, 31, 171-187.	2.9	91
64	Position paper: Open web-distributed integrated geographic modelling and simulation to enable broader participation and applications. Earth-Science Reviews, 2020, 207, 103223.	4.0	87
65	Reconciling sustainability, systems theory and discounting. Ecological Economics, 2007, 63, 104-113.	2.9	83
66	A language for modular spatio-temporal simulation. Ecological Modelling, 1997, 103, 105-113.	1.2	79
67	Values in socio-environmental modelling: Persuasion for action or excuse for inaction. Environmental Modelling and Software, 2014, 53, 207-212.	1.9	78
68	Modular ecosystem modeling. Environmental Modelling and Software, 2004, 19, 285-304.	1.9	75
69	Purpose, processes, partnerships, and products: four Ps to advance participatory socioâ€environmental modeling. Ecological Applications, 2018, 28, 46-61.	1.8	74
70	Where to produce rapeseed biodiesel and why? Mapping European rapeseed energy efficiency. Renewable Energy, 2015, 74, 49-59.	4.3	71
71	Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes. Energy Policy, 2018, 118, 325-345.	4.2	70
72	Effectiveness of a participatory modeling effort to identify and advance community water resource goals in St. Albans, Vermont. Environmental Modelling and Software, 2010, 25, 1428-1438.	1.9	68

#	Article	IF	CITATIONS
73	Lake-wetland ecosystem services modeling and valuation: Progress, gaps and future directions. Ecosystem Services, 2018, 33, 19-28.	2.3	68
74	Comparing modelling frameworks – A workshop approach. Environmental Modelling and Software, 2006, 21, 895-910.	1.9	67
75	Twelve Questions for the Participatory Modeling Community. Earth's Future, 2018, 6, 1046-1057.	2.4	63
76	From data to decisions: Processing information, biases, and beliefs for improved management of natural resources and environments. Earth's Future, 2017, 5, 356-378.	2.4	62
77	An overview of the model integration process: From pre-integration assessment to testing. Environmental Modelling and Software, 2017, 87, 49-63.	1.9	61
78	Towards a more holistic sustainability assessment framework for agro-bioenergy systems — A review. Environmental Impact Assessment Review, 2017, 62, 61-75.	4.4	61
79	Modelling ecological and economic systems with STELLA: Part II. Ecological Modelling, 1998, 112, 81-84.	1.2	59
80	Comparing Raster Map Comparison Algorithms for Spatial Modeling and Analysis. Photogrammetric Engineering and Remote Sensing, 2005, 71, 975-984.	0.3	58
81	Creating an Earth Atmospheric Trust. Science, 2008, 319, 724-724.	6.0	57
82	Energy efficiency for rapeseed biodiesel production in different farming systems. Energy Efficiency, 2014, 7, 79-95.	1.3	57
83	Integrated modeling of extended agro-food supply chains: A systems approach. European Journal of Operational Research, 2021, 288, 852-868.	3.5	57
84	Virtual Environments Begin to Embrace Processâ€based Geographic Analysis. Transactions in GIS, 2015, 19, 493-498.	1.0	56
85	Overcoming societal addictions: What can we learn from individual therapies?. Ecological Economics, 2017, 131, 543-550.	2.9	55
86	The production and allocation of information as a good that is enhanced with increased use. Ecological Economics, 2010, 69, 1344-1354.	2.9	54
87	Land market mechanisms for preservation of space for coastal ecosystems: An agent-based analysis. Environmental Modelling and Software, 2011, 26, 179-190.	1.9	53
88	Economics, socio-ecological resilience and ecosystem services. Journal of Environmental Management, 2016, 183, 389-398.	3.8	52
89	Model integration and the role of data. Environmental Modelling and Software, 2010, 25, 965-969.	1.9	51
90	Best practices for conceptual modelling in environmental planning and management. Environmental Modelling and Software, 2016, 80, 113-121.	1.9	51

#	Article	IF	CITATIONS
91	Mathematical modelling of a fish pond ecosystem. Ecological Modelling, 1984, 21, 315-337.	1.2	50
92	Simulation games that integrate research, entertainment, and learning around ecosystem services. Ecosystem Services, 2014, 10, 195-201.	2.3	50
93	Design of multi-paradigm integrating modelling tools for ecological research. Environmental Modelling and Software, 2000, 15, 169-177.	1.9	46
94	Spatial Optimization of Best Management Practices to Attain Water Quality Targets. Water Resources Management, 2014, 28, 1485-1499.	1.9	46
95	Optimization methodology for land use patterns—evaluation based on multiscale habitat pattern comparison. Ecological Modelling, 2003, 168, 217-231.	1.2	45
96	Modelling systemic change in coupled socio-environmental systems. Environmental Modelling and Software, 2016, 75, 318-332.	1.9	44
97	Participatory modeling and the dilemma of diffuse nitrogen management in a residential watershed. Environmental Modelling and Software, 2007, 22, 619-629.	1.9	43
98	Surface water flow in landscape models: 2. Patuxent watershed case study. Ecological Modelling, 1999, 119, 211-230.	1.2	42
99	Ecosystem and human health assessment to define environmental management strategies: The case of long-term human impacts on an Arctic lake. Science of the Total Environment, 2006, 369, 1-20.	3.9	40
100	Exploring consumer behavior and policy options in organic food adoption: Insights from the Australian wine sector. Environmental Science and Policy, 2020, 109, 116-124.	2.4	39
101	Socio-technical scales in socio-environmental modeling: Managing a system-of-systems modeling approach. Environmental Modelling and Software, 2021, 135, 104885.	1.9	38
102	Simulation Modeling on the Macintosh Using STELLA. BioScience, 1987, 37, 129-132.	2.2	36
103	Spatiotemporal features of the hydro-biogeochemical cycles in a typical loess gully watershed. Ecological Indicators, 2018, 91, 542-554.	2.6	36
104	Assessing the macroeconomic impacts of individual behavioral changes on carbon emissions. Climatic Change, 2020, 158, 141-160.	1.7	36
105	A simulation model for the annual fluctuation of Zostera marina biomass in the Venice lagoon. Aquatic Botany, 2001, 70, 135-150.	0.8	35
106	Toward understanding the human dimensions of the rapidly changing arctic system: insights and approaches from five HARC projects. Regional Environmental Change, 2007, 7, 173-186.	1.4	35
107	A Community Approach to Earth Systems Modeling. Eos, 2010, 91, 117-118.	0.1	35
108	Shifts in consumer behavior towards organic products: Theory-driven data analytics. Journal of Retailing and Consumer Services, 2021, 61, 102516.	5 . 3	35

#	Article	IF	CITATIONS
109	Moving beyond evidenceâ€free environmental policy. Frontiers in Ecology and the Environment, 2015, 13, 441-448.	1.9	34
110	Ecosystem health, ecosystem services, and the wellâ€being of humans and the rest of nature. Global Change Biology, 2022, 28, 5027-5040.	4.2	34
111	Targeting social learning and engagement: What serious games and gamification can offer to participatory modeling. Environmental Modelling and Software, 2020, 134, 104846.	1.9	33
112	Watershed management and the Web. Journal of Environmental Management, 1999, 56, 231-245.	3.8	32
113	Envisioning shared goals for humanity: a detailed, shared vision of a sustainable and desirable USA in 2100. Ecological Economics, 2002, 43, 245-259.	2.9	31
114	Hydropower development in the lower Mekong basin: alternative approaches to deal with uncertainty. Regional Environmental Change, 2013, 13, 3-15.	1.4	31
115	Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production $\hat{a}\in$ A case study of ethanol and biogas production from maize feedstock. Applied Energy, 2017, 198, 426-439.	5.1	30
116	A new approach to the problem of overlapping values: A case study in Australia \times^3 s Great Barrier Reef. Ecosystem Services, 2014, 10, 61-78.	2.3	29
117	Exploring bioenergy potentials of built-up areas based on NEG-EROEI indicators. Ecological Indicators, 2014, 47, 67-79.	2.6	29
118	The Energyâ€Water Nexus: Why Should We Care?. Journal of Contemporary Water Research and Education, 2009, 143, 17-29.	0.7	28
119	Qualitative model of eutrophication in macrophyte lakes. Ecological Modelling, 1987, 35, 211-226.	1.2	27
120	Surface water flow in landscape models:. Ecological Modelling, 1998, 108, 131-144.	1.2	27
121	Understanding and communicating sustainability: global versus regional perspectives. Environment, Development and Sustainability, 2008, 10, 487-501.	2.7	27
122	The Vermont Common Assets Trust: An institution for sustainable, just and efficient resource allocation. Ecological Economics, 2015, 109, 71-79.	2.9	27
123	Estimating the potential of roadside vegetation for bioenergy production. Journal of Cleaner Production, 2015, 102, 213-225.	4.6	25
124	Nature-inspired stormwater management practice: The ecological wisdom underlying the Tuanchen drainage system in Beijing, China and its contemporary relevance. Landscape and Urban Planning, 2016, 155, 11-20.	3.4	25
125	Virtual geographic environments in socio-environmental modeling: a fancy distraction or a key to communication?. International Journal of Digital Earth, 2018, 11, 408-419.	1.6	25
126	The comparison of four dynamic systems-based software packages: Translation and sensitivity analysis. Environmental Modelling and Software, 2006, 21, 1491-1502.	1.9	23

#	Article	IF	Citations
127	Assessing bioenergy potential in rural areas – A NEG-EROEI approach. Biomass and Bioenergy, 2013, 58, 350-364.	2.9	23
128	Evaluating Participatory Modeling Methods for Coâ€creating Pathways to Sustainability. Earth's Future, 2021, 9, e2020EF001843.	2.4	23
129	Value Theory and Energy. , 2004, , 337-346.		22
130	StellaR: A software to translate Stella models into R open-source environment. Environmental Modelling and Software, 2012, 38, 117-118.	1.9	21
131	Using Multiple Watershed Models to Predict Water, Nitrogen, and Phosphorus Discharges to the Patuxent Estuary ¹ . Journal of the American Water Resources Association, 2013, 49, 15-39.	1.0	21
132	Thinking broadly about costs and benefits in ecological management. Integrated Environmental Assessment and Management, 2006, 2, 166-173.	1.6	19
133	Maintenance of salt barrens inhibited landward invasion of <i>Spartina</i> species in salt marshes. Ecosphere, 2017, 8, e01982.	1.0	19
134	Scenario planning including ecosystem services for a coastal region in South Australia. Ecosystem Services, 2018, 31, 194-207.	2.3	19
135	Designing the Distributed Model Integration Framework – DMIF. Environmental Modelling and Software, 2017, 94, 112-126.	1.9	18
136	Chapter Three Bridging the Gaps Between Design and Use: Developing Tools to Support Environmental Management and Policy. Developments in Integrated Environmental Assessment, 2008, , 33-48.	0.0	16
137	Spatially Explicit Modeling of Land Use Specific Phosphorus Transport Pathways to Improve TMDL Load Estimates and Implementation Planning. Water Resources Management, 2010, 24, 1621-1644.	1.9	16
138	Thematic Issue on the Future of Integrated Modeling Science and Technology. Environmental Modelling and Software, 2013, 39, 1-2.	1.9	16
139	Non-spatial calibrations of a general unit model for ecosystem simulations. Ecological Modelling, 2001, 146, 17-32.	1.2	15
140	The Future of Ecosystem Services in Asia and the Pacific. Asia and the Pacific Policy Studies, 2016, 3, 389-404.	0.6	15
141	Simulation modeling system for aquatic bodies. Ecological Modelling, 1990, 52, 181-205.	1.2	14
142	Bioenergy from Low-Intensity Agricultural Systems: An Energy Efficiency Analysis. Energies, 2017, 10, 29.	1.6	14
143	Patuxent landscape model: 1. Hydrological model development. Water Resources, 2007, 34, 163-170.	0.3	13
144	Ecological impacts and limits of biomass use: a critical review. Clean Technologies and Environmental Policy, 2020, 22, 1591-1611.	2.1	13

#	Article	IF	CITATIONS
145	Understanding Human and Ecosystem Dynamics in the Kola Arctic : A Participatory Integrated Study. Arctic, 2004, 57, .	0.2	13
146	Applying the Patuxent Landscape Unit Model to human dominated ecosystems: the case of agriculture. Ecological Modelling, 2003, 159, 161-177.	1.2	12
147	Values in Participatory Modeling: Theory and Practice. , 2017, , 47-63.		12
148	Where Does Theory Have It Right? A Comparison of Theory-Driven and Empirical Agent Based Models. Jasss, 2021, 24, .	1.0	12
149	The costs of increasing precision for ecosystem services valuation studies. Ecological Indicators, 2022, 135, 108551.	2.6	12
150	Land use trade-offs in China's protected areas from the perspective of accounting values of ecosystem services. Journal of Environmental Management, 2022, 315, 115178.	3.8	12
151	A minimal model of eutrophication in freshwater ecosystems. Ecological Modelling, 1984, 23, 277-292.	1.2	11
152	Pricing strategies in inelastic energy markets: can we use less if we can't extract more?. Frontiers of Earth Science, 2014, 8, 3-17.	0.9	11
153	Free-riders to forerunners. Nature Geoscience, 2015, 8, 895-898.	5.4	11
154	Chapter One Modelling and Software as Instruments for Advancing Sustainability. Developments in Integrated Environmental Assessment, 2008, , $1\text{-}13$.	0.0	10
155	The future of agriculture and society in Iowa: four scenarios. International Journal of Agricultural Sustainability, 2012, 10, 76-92.	1.3	10
156	Response to Comment by Walker et al. on "From Data to Decisions: Processing Information, Biases, and Beliefs for Improved Management of Natural Resources and Environments†Earth's Future, 2018, 6, 762-769.	2.4	10
157	Discussoo: Towards an intelligent tool for multi-scale participatory modeling. Environmental Modelling and Software, 2021, 140, 105044.	1.9	10
158	Ecosystem Services and Human Wellbeing-Based Approaches Can Help Transform Our Economies. Frontiers in Ecology and Evolution, 2022, 10, .	1.1	10
159	Exploring Low-Carbon Futures: A Web Service Approach to Linking Diverse Climate-Energy-Economy Models. Energies, 2019, 12, 2880.	1.6	9
160	Black Boxes and the Role of Modeling in Environmental Policy Making. Frontiers in Environmental Science, 2021, 9, .	1.5	9
161	Ideal, Best, and Emerging Practices in Creating Artificial Societies. , 2019, , .		8
162	Exploring temporal and functional synchronization in integrating models: A sensitivity analysis. Computers and Geosciences, 2016, 90, 162-171.	2.0	7

#	Article	IF	CITATIONS
163	Analyzing the social impacts of scooters with geo-spatial methods. Journal of Environmental Management, 2019, 242, 529-538.	3.8	7
164	Impact of occupant autonomy on satisfaction and building energy efficiency. Energy and Built Environment, 2023, 4, 377-385.	2.9	7
165	Patuxent Landscape Model: 4. Model application. Water Resources, 2007, 34, 501-510.	0.3	6
166	Analysis of annual fluctuations of C. nodosa in the Venice lagoon: Modeling approach. Ecological Modelling, 2008, 216, 134-144.	1.2	6
167	Participatory Modeling for Sustainability. , 2017, , 33-39.		6
168	Natural capital and ecosystem services. , 2018, , 254-268.		6
169	Leadership in participatory modelling – Is there a need for it?. Environmental Modelling and Software, 2020, 133, 104834.	1.9	6
170	Tracing Macroeconomic Impacts of Individual Behavioral Changes through Model Integration. IFAC-PapersOnLine, 2018, 51, 96-101.	0.5	5
171	PERSWADE-CORE: A Core Ontology for Communicating Socio-Environmental and Sustainability Science. IEEE Access, 2019, 7, 127177-127188.	2.6	5
172	LONG-TERM CHANGES IN THE LARGE LAKE ECOSYSTEMS UNDER POLLUTION: THE CASE OF THE NORTH-EAST EUROPEAN LAKES. Geography, Environment, Sustainability, 2012, 5, 67-83.	0.6	5
173	Patuxent landscape model: 2. Model development — nutrients, plants, and detritus. Water Resources, 2007, 34, 268-276.	0.3	4
174	Records of Engagement and Decision Tracking for Adaptive Management and Policy Development. , 2018, , .		3
175	Ecological Economics 1., 2019, , 258-264.		3
176	INTEGRATED ECOLOGICAL ECONOMIC MODELING OF THE PATUXENT RIVER WATERSHED, MARYLAND. , 2002, 72, 203.		3
177	Participatory modelling and systems intelligence: A systems-based and transdisciplinary partnership. Socio-Economic Planning Sciences, 2022, 83, 101310.	2.5	3
178	Patuxent Landscape Model. III. Model calibration. Water Resources, 2007, 34, 372-384.	0.3	2
179	Chapter Twelve Building a Community Modelling and Information Sharing Culture. Developments in Integrated Environmental Assessment, 2008, 3, 345-366.	0.0	2
180	The Potential for Integrated Assessment and Modeling to Solve Environmental Problems. , 2002, , 19-39.		2

#	Article	IF	CITATIONS
181	Teaching and Learning Ecological Modeling over the Web: a Collaborative Approach. Ecology and Society, 2002, 6, .	0.9	2
182	Commentary: The Future of Changes in Global Ecosystem Services. Global Environmental Change, 2021, 71, 102399.	3.6	2
183	DAESim: A dynamic agro-ecosystem simulation model for natural capital assessment. Ecological Modelling, 2022, 468, 109930.	1.2	2
184	Chapter Sixteen Regional Models of Intermediate Complexity (REMICs) – A New Direction in Integrated Landscape Modelling. Developments in Integrated Environmental Assessment, 2008, , 285-295.	0.0	1
185	6th International Congress on Environmental Modelling and Software (iEMSs): "Managing Resources of a Limited Planet: Pathways and Visions under Uncertainty†A congress report. Environmental Modelling and Software, 2013, 43, 160-162.	1.9	1
186	Conceptual Diagrams and Flow Diagrams. , 2019, , 58-64.		1
187	Sensitivity, Calibration, Validation, Verification., 2019, , 172-177.		1
188	Modules and Integrated Modeling. , 2019, , 164-169.		1
189	Participatory Modeling for Group Decision Support. , 2021, , 395-411.		1
190	Disentangling the relative influence of regeneration processes on marsh plant assembly with a stage-structured plant assembly model. Ecological Modelling, 2021, 455, 109646.	1.2	1
191	Participatory Modeling for Group Decision Support. , 2020, , 1-17.		1
192	Variability and management of large marine ecosystems. Ecological Modelling, 1989, 45, 153-154.	1.2	0
193	HYDRO: simulation of hydrodynamics and water pollution. Environmental Software, 1993, 8, 209-218.	0.3	O
194	Sustainable Development on a Watershed Scale Russian Case Study—Pronya River. Lake and Reservoir Management, 1994, 9, 46-50.	0.4	0
195	Educational Investments in Environmental Science and Management. , 2003, , 263-285.		0
196	Landscape Optimization: Applications of a Spatial Ecosystem Model. , 2004, , 301-326.		0
197	SVP as a Short Term Planning Tool: Preliminary Results of a Pilot Study. , 2008, , .		0
198	The Energyâ€Water Nexus: Potential Roles for the U.S. Army Corps of Engineers. Journal of Contemporary Water Research and Education, 2009, 143, 42-48.	0.7	0

#	Article	IF	CITATIONS
199	Last Island. , 2019, , .		O
200	Parameterization., 2019,, 170-171.		O
201	Pilot Collaborative Modeling Study for Regulatory Issues on the James River. , 2007, , .		O
202	Beyond Service-Oriented Architectures. Advances in Computational Intelligence and Robotics Book Series, 2018, , 16-27.	0.4	0
203	Integrated ecological economic modeling: what is it good for?. , 2020, , .		O
204	Participatory Modeling for Sustainability. , 2022, , .		0