Chin Kui Cheng, CEng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824786/publications.pdf

Version: 2024-02-01

203 papers

8,562 citations

38742 50 h-index 71685 **76** g-index

208 all docs 208 docs citations

208 times ranked 7022 citing authors

#	Article	IF	CITATIONS
1	Electro-oxidation of waste glycerol to tartronic acid over Pt/CNT nanocatalyst: study of effect of reaction time on product distribution. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2023, 45, 10998-11014.	2.3	8
2	Biodiesel produced using potassium methoxide homogeneous alkaline catalyst: effects of various factors on soap formation. Biomass Conversion and Biorefinery, 2023, 13, 9237-9247.	4.6	6
3	Hydrogen Generation from CO2 Reforming of Biomass-Derived Methanol on Ni/SiO2 Catalyst. Topics in Catalysis, 2023, 66, 41-52.	2.8	1
4	Heavy metal removal by biomass-derived carbon nanotubes as a greener environmental remediation: A comprehensive review. Chemosphere, 2022, 287, 131959.	8.2	130
5	Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal Co-gasification techniques: A multi-criteria modeling approach. Chemosphere, 2022, 287, 132052.	8.2	28
6	Biomass-derived carbon-based and silica-based materials for catalytic and adsorptive applications- An update since 2010. Chemosphere, 2022, 287, 132222.	8.2	8
7	CO2 hydrogenation to light olefins over mixed Fe-Co-K-Al oxides catalysts prepared via precipitation and reduction methods. Chemical Engineering Journal, 2022, 428, 131389.	12.7	51
8	Bio-hydrogen production from steam reforming of liquid biomass wastes and biomass-derived oxygenates: A review. Fuel, 2022, 311, 122623.	6.4	29
9	Light olefins synthesis from CO2 hydrogenation over mixed Fe–Co–K supported on micro-mesoporous carbon catalysts. International Journal of Hydrogen Energy, 2022, 47, 42185-42199.	7.1	11
10	Interaction effect of process parameters and <scp>Pdâ€electrocatalyst</scp> in formic acid <scp>electroâ€oxidation</scp> for fuel cell applications: Implementing supervised machine learning algorithms. International Journal of Energy Research, 2022, 46, 21583-21597.	4.5	8
11	The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. Journal of Environmental Management, 2022, 307, 114385.	7.8	33
12	Fungal Fermented Palm Kernel Expeller as Feed for Black Soldier Fly Larvae in Producing Protein and Biodiesel. Journal of Fungi (Basel, Switzerland), 2022, 8, 332.	3.5	13
13	Biomass-derived biochar: From production to application in removing heavy metal-contaminated water. Chemical Engineering Research and Design, 2022, 160, 704-733.	5.6	86
14	Enhanced activity and stability of SO42â^'/ZrO2 by addition of Cu combined with CuZnOZrO2 for direct synthesis of dimethyl ether from CO2 hydrogenation. International Journal of Hydrogen Energy, 2022, 47, 41374-41385.	7.1	11
15	Investigation into Lewis and BrÃ,nsted acid interactions between metal chloride and aqueous choline chloride-oxalic acid for enhanced furfural production from lignocellulosic biomass. Science of the Total Environment, 2022, 827, 154049.	8.0	25
16	Rapid effectual entrapment of arsenic pollutant by Fe2O3 supported on bimodal meso-macroporous silica for cleaning up aquatic system. Chemosphere, 2022, 300, 134613.	8.2	9
17	Uniform mesoporous hierarchical nanosized zeolite Y for production of Hydrocarbon-like biofuel under H2-Free deoxygenation. Fuel, 2022, 322, 124208.	6.4	3
18	Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends. Chemosphere, 2022, 302, 134825.	8.2	53

#	Article	IF	CITATIONS
19	Photoelectrocatalytic reduction of CO2 to methanol over CuFe2O4@PANI photocathode. International Journal of Hydrogen Energy, 2021, 46, 24709-24720.	7.1	43
20	CO2 hydrogenation to methanol at high reaction temperatures over In2O3/ZrO2 catalysts: Influence of calcination temperatures of ZrO2 support. Catalysis Today, 2021, 375, 298-306.	4.4	39
21	Development of nanosilica-based catalyst for syngas production via CO2 reforming of CH4: A review. International Journal of Hydrogen Energy, 2021, 46, 24687-24708.	7.1	29
22	Modeling the effect of process parameters on the photocatalytic degradation of organic pollutants using artificial neural networks. Chemical Engineering Research and Design, 2021, 145, 120-132.	5.6	49
23	Methane dry reforming over Ni/fibrous SBA-15 catalysts: Effects of support morphology (rod-liked) Tj ETQq1 1 0.	.784314 rş	gBT_{8}Overlo <mark>ck</mark>
24	Tuning interaction of surface-adsorbed species over Fe/K-Al2O3 modified with transition metals (Cu,) Tj ETQq0 0	0 rgBT /C	verlgck 10 Tf
25	Effect of reaction conditions on the lifetime of SAPO-34 catalysts in methanol to olefins process – A review. Fuel, 2021, 283, 118851.	6.4	59
26	Photocatalytic remediation of organic waste over Keggin-based polyoxometalate materials: A review. Chemosphere, 2021, 263, 128244.	8.2	87
27	Identification of microbial inhibitions and mitigation strategies towards cleaner bioconversions of palm oil mill effluent (POME): A review. Journal of Cleaner Production, 2021, 280, 124346.	9.3	32
28	Sustainable utilization of waste glycerol for 1,3-propanediol production over Pt/WOx/Al2O3 catalysts: Effects of catalyst pore sizes and optimization of synthesis conditions. Environmental Pollution, 2021, 272, 116029.	7.5	29
29	Significant improvement of power generation through effective substrate-inoculum interaction mechanism in microbial fuel cell. Journal of Power Sources, 2021, 484, 229285.	7.8	16
30	Elimination of energy-consuming mechanical stirring: Development of auto-suspending ZnO-based photocatalyst for organic wastewater treatment. Journal of Hazardous Materials, 2021, 409, 124532.	12.4	10
31	Effects of operating parameters for dry reforming of methane: A short review. E3S Web of Conferences, 2021, 287, 04015.	0.5	4
32	Modeling the prediction of hydrogen production by coâ€gasification of plastic and rubber wastes using machine learning algorithms. International Journal of Energy Research, 2021, 45, 9580-9594.	4.5	24
33	Recent development of high-performance photocatalysts for N2 fixation: A review. Journal of Environmental Chemical Engineering, 2021, 9, 104997.	6.7	33
34	Black Soldier Fly Larval Valorization Benefitting from Ex-Situ Fungal Fermentation in Reducing Coconut Endosperm Waste. Processes, 2021, 9, 275.	2.8	10
35	CO2 Hydrogenation to Light Olefins Over In2O3/SAPO-34 and Fe-Co/K-Al2O3 Composite Catalyst. Topics in Catalysis, 2021, 64, 316-327.	2.8	21
36	Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production. Sustainability, 2021, 13, 3247.	3.2	83

#	Article	IF	Citations
37	Emerging photocatalysts for air purification. Materials Letters, 2021, 288, 129355.	2.6	13
38	Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins. Chemical Engineering Science, 2021, 233, 116428.	3.8	40
39	Preface to "Thermocatalytic Conversion of CO2 into Sustainable Chemical Products― Topics in Catalysis, 2021, 64, 315-315.	2.8	0
40	Holistic process evaluation of non-conventional palm oil mill effluent (POME) treatment technologies: A conceptual and comparative review. Journal of Hazardous Materials, 2021, 409, 124964.	12.4	27
41	A comprehensive review on the techniques for coconut oil extraction and its application. Bioprocess and Biosystems Engineering, 2021, 44, 1807-1818.	3.4	33
42	Adsorption behavior of mercury over hydrated lime: Experimental investigation and adsorption process characteristic study. Chemosphere, 2021, 271, 129504.	8.2	32
43	Application of statistical modeling for the production of highly pure rhamnolipids using magnetic biocatalysts: Evaluating its efficiency as a bioremediation agent. Journal of Hazardous Materials, 2021, 412, 125323.	12.4	11
44	Simulation and Optimisation of Integrated Anaerobic-Aerobic Bioreactor (IAAB) for the Treatment of Palm Oil Mill Effluent. Processes, 2021, 9, 1124.	2.8	17
45	Integrated catalytic insights into methanol production: Sustainable framework for CO2 conversion. Journal of Environmental Management, 2021, 289, 112468.	7.8	28
46	Recent advances in light olefins production from catalytic hydrogenation of carbon dioxide. Chemical Engineering Research and Design, 2021, 151, 401-427.	5.6	39
47	Photocatalytic water splitting for solving energy crisis: Myth, Fact or Busted?. Chemical Engineering Journal, 2021, 417, 128847.	12.7	108
48	Nonsevere furfural production using ultrasonicated oil palm fronds and aqueous choline chloride-oxalic acid. Industrial Crops and Products, 2021, 166, 113397.	5.2	32
49	Augmentation of microbial fuel cell and photocatalytic polishing technique for the treatment of hazardous dimethyl phthalate containing wastewater. Journal of Hazardous Materials, 2021, 415, 125587.	12.4	18
50	A review on advances in green treatment of glycerol waste with a focus on electro-oxidation pathway. Chemosphere, 2021, 276, 130128.	8.2	41
51	Potential application of Allium Cepa seeds as a novel biosorbent for efficient biosorption of heavy metals ions from aqueous solution. Chemosphere, 2021, 279, 130545.	8.2	46
52	Advances and recent trends in cobalt-based cocatalysts for solar-to-fuel conversion. Applied Materials Today, 2021, 24, 101074.	4.3	23
53	Kinetic modeling and reaction pathways for thermo-catalytic conversion of carbon dioxide and methane to hydrogen-rich syngas over alpha-alumina supported cobalt catalyst. International Journal of Hydrogen Energy, 2021, 46, 30871-30881.	7.1	2
54	Microalgae and ammonia: A review on inter-relationship. Fuel, 2021, 303, 121303.	6.4	86

#	Article	IF	CITATIONS
55	Converting solid biomass waste into nanomaterial for the treatment of hazardous waste. Chemosphere, 2021, 285, 131461.	8.2	1
56	Microwave co-torrefaction of waste oil and biomass pellets for simultaneous recovery of waste and co-firing fuel. Renewable and Sustainable Energy Reviews, 2021, 152, 111699.	16.4	29
57	Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability. Fuel Processing Technology, 2021, 223, 106997.	7.2	256
58	Unravelling CO2 capture performance of microalgae cultivation and other technologies via comparative carbon balance analysis. Journal of Environmental Chemical Engineering, 2021, 9, 106519.	6.7	22
59	SDS modified mesoporous silica MCM-41 for the adsorption of Cu2+, Cd2+, Zn2+ from aqueous systems. Journal of Environmental Chemical Engineering, 2020, 8, 102920.	6.7	22
60	Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): A sustainable catalyst for hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 18533-18548.	7.1	22
61	Syngas from palm oil mill effluent (POME) steam reforming over lanthanum cobaltite: Effects of net-basicity. Renewable Energy, 2020, 148, 349-362.	8.9	23
62	Catalytic deoxygenation of triolein to green fuel over mesoporous TiO2 aided by in situ hydrogen production. International Journal of Hydrogen Energy, 2020, 45, 11605-11614.	7.1	22
63	Ethylene production from ethanol dehydration over mesoporous SBA-15 catalyst derived from palm oil clinker waste. Journal of Cleaner Production, 2020, 249, 119323.	9.3	30
64	Facile synthesis of tunable dendritic fibrous SBA-15 (DFSBA-15) with radial wrinkle structure. Microporous and Mesoporous Materials, 2020, 294, 109872.	4.4	14
65	Engineering pyrolysis biochar via single-step microwave steam activation for hazardous landfill leachate treatment. Journal of Hazardous Materials, 2020, 390, 121649.	12.4	110
66	A review of organic waste enrichment for inducing palatability of black soldier fly larvae: Wastes to valuable resources. Environmental Pollution, 2020, 267, 115488.	7.5	79
67	Degradation Behaviors of Solid Oxide Fuel Cell Stacks in Steady-State and Cycling Conditions. Energy &	5.1	13
68	Integration of machine learning-based prediction for enhanced Model's generalization: Application in photocatalytic polishing of palm oil mill effluent (POME). Environmental Pollution, 2020, 267, 115500.	7.5	17
69	A review over the role of catalysts for selective short-chain polyglycerol production from biodiesel derived waste glycerol. Environmental Technology and Innovation, 2020, 19, 100859.	6.1	48
70	Facile synthesis of CuO/CdS heterostructure photocatalyst for the effective degradation of dye under visible light. Environmental Research, 2020, 188, 109803.	7.5	72
71	Optimum interaction of light intensity and CO2 concentration in bioremediating N-rich real wastewater via assimilation into attached microalgal biomass as the feedstock for biodiesel production. Chemical Engineering Research and Design, 2020, 141, 355-365.	5.6	59
72	Role of Calcination Temperatures of ZrO ₂ Support on Methanol Synthesis from CO ₂ Hydrogenation at High Reaction Temperatures over ZnO _{<i>x</i>} /ZrO ₂ Catalysts. Industrial & Engineering Chemistry Research, 2020, 59, 5525-5535.	3.7	81

#	Article	IF	CITATIONS
73	Photoelectrochemical activity of CuO-CdS heterostructured catalyst for CO ₂ reduction. IOP Conference Series: Materials Science and Engineering, 2020, 736, 042023.	0.6	4
74	Glycerol electro-oxidation to dihydroxyacetone on phosphorous-doped Pd/CNT nanoparticles in alkaline medium. Catalysis Communications, 2020, 139, 105964.	3.3	21
75	Kinetic and CFD Modeling of Exhaust Gas Reforming of Natural Gas in a Catalytic Fixedâ€Bed Reactor for Spark Ignition Engines. Chemical Engineering and Technology, 2020, 43, 705-718.	1.5	9
76	Pd/CNT Catalysts for Glycerol Electroâ€oxidation: Effect of Pd Loading on Production of Valuable Chemical Products. Electroanalysis, 2020, 32, 1139-1147.	2.9	14
77	Tuning Interactions of Surfaceâ€adsorbed Species over Feâ^'Co/Kâ^'Al ₂ O ₃ Catalyst by Different K Contents: Selective CO ₂ Hydrogenation to Light Olefins. ChemCatChem, 2020, 12, 3306-3320.	3.7	56
78	Biodiesel synthesized from waste cooking oil in a continuous microwave assisted reactor reduced PM and NOx emissions. Environmental Research, 2020, 185, 109452.	7.5	32
79	Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar. Journal of Hazardous Materials, 2020, 396, 122610.	12.4	81
80	Simultaneous Enhancement of Photocatalytic Bactericidal Activity and Strength Properties of Acrylonitrile-Butadiene-Styrene Plastic Via a Facile Preparation with Silane/TiO2. Polymers, 2020, 12, 917.	4.5	6
81	Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products. Renewable and Sustainable Energy Reviews, 2020, 127, 109871.	16.4	140
82	Recent Advances in Steam Reforming of Glycerol for Syngas Production., 2020,, 399-425.		8
83	Dry reforming of methane over Ni/dendritic fibrous SBA-15 (Ni/DFSBA-15): Optimization, mechanism, and regeneration studies. International Journal of Hydrogen Energy, 2020, 45, 8507-8525.	7.1	50
84	Glycerol Waste Valorization to Mesoxalic Acid Over a Bimetallic Pt-Pd/CNT Catalyst in Alkaline Medium. Journal of Nanoscience and Nanotechnology, 2020, 20, 5916-5927.	0.9	5
85	Promising hydrothermal technique for efficient CO2 methanation over Ni/SBA-15. International Journal of Hydrogen Energy, 2019, 44, 20792-20804.	7.1	39
86	Hydrogen-rich syngas production via steam reforming of palm oil mill effluent (POME) – A thermodynamics analysis. International Journal of Hydrogen Energy, 2019, 44, 20711-20724.	7.1	39
87	Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste. International Journal of Hydrogen Energy, 2019, 44, 20815-20825.	7.1	26
88	An evaluation of subcritical hydrothermal treatment of end-of-pipe palm oil mill effluent. Heliyon, 2019, 5, e01792.	3.2	7
89	Artificial Intelligence Modelling Approach for the Prediction of CO-Rich Hydrogen Production Rate from Methane Dry Reforming. Catalysts, 2019, 9, 738.	3.5	21
90	Impact of various microalgal-bacterial populations on municipal wastewater bioremediation and its energy feasibility for lipid-based biofuel production. Journal of Environmental Management, 2019, 249, 109384.	7.8	82

#	Article	IF	Citations
91	Hetero-structure CdS–CuFe2O4 as an efficient visible light active photocatalyst for photoelectrochemical reduction of CO2 to methanol. International Journal of Hydrogen Energy, 2019, 44, 26271-26284.	7.1	51
92	A Sugarcane-Bagasse-Based Adsorbent Employed for Mitigating Eutrophication Threats and Producing Biodiesel Simultaneously. Processes, 2019, 7, 572.	2.8	11
93	Facile synthesis of CaFe2O4 for visible light driven treatment of polluting palm oil mill effluent: Photokinetic and scavenging study. Science of the Total Environment, 2019, 661, 522-530.	8.0	33
94	Selective oxidation of glycerol to mesoxalic acid by laccase/2,2,6,6-tetramethylpiperidine-N-oxyl system: Effect of process conditions and the kinetic modeling. Chemical Engineering Communications, 2019, 206, 1645-1660.	2.6	8
95	TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. Journal of Cleaner Production, 2019, 233, 209-225.	9.3	60
96	Potential Protein and Biodiesel Sources from Black Soldier Fly Larvae: Insights of Larval Harvesting Instar and Fermented Feeding Medium. Energies, 2019, 12, 1570.	3.1	64
97	Tuning adsorption properties of GaxIn2â^xO3 catalysts for enhancement of methanol synthesis activity from CO2 hydrogenation at high reaction temperature. Applied Surface Science, 2019, 489, 278-286.	6.1	40
98	Biofilm re-vitalization using hydrodynamic shear stress for stable power generation in microbial fuel cell. Journal of Electroanalytical Chemistry, 2019, 844, 14-22.	3.8	21
99	Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environmental Technology and Innovation, 2019, 15, 100377.	6.1	114
100	Syngas production via CO2 reforming of CH4 over Ni-based SBA-15: Promotional effect of promoters (Ce, Mg, and Zr). Materials Today Energy, 2019, 12, 408-417.	4.7	54
101	Syngas from catalytic steam reforming of palm oil mill effluent: An optimization study. International Journal of Hydrogen Energy, 2019, 44, 9220-9236.	7.1	37
102	Synthesis and Evaluation of Copper-Supported Titanium Oxide Nanotubes as Electrocatalyst for the Electrochemical Reduction of Carbon Oxide to Organics. Catalysts, 2019, 9, 298.	3.5	26
103	Pore size effects on physicochemical properties of Fe-Co/K-Al2O3 catalysts and their catalytic activity in CO2 hydrogenation to light olefins. Applied Surface Science, 2019, 483, 581-592.	6.1	61
104	Modeling to enhance attached microalgal biomass growth onto fluidized beds packed in nutrients-rich wastewater whilst simultaneously biofixing CO2 into lipid for biodiesel production. Energy Conversion and Management, 2019, 185, 1-10.	9.2	58
105	Harnessing renewable hydrogen-rich syngas from valorization of palm oil mill effluent (POME) using steam reforming technique. Renewable Energy, 2019, 138, 1114-1126.	8.9	39
106	One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresource Technology, 2019, 278, 486-489.	9.6	75
107	Enhanced Biohydrogen Production from Citrus Wastewater Using Anaerobic Sludge Pretreated by an Electroporation Technique. Industrial & Electroporation Technique.	3.7	21
108	Photoelectrocatalytic Reduction of Carbon Dioxide to Methanol Using CuFe ₂ O ₄ Modified with Graphene Oxide under Visible Light Irradiation. Industrial & Company Engineering Chemistry Research, 2019, 58, 563-572.	3.7	62

#	Article	IF	CITATIONS
109	2018 International Conference of Chemical Engineering and Industrial Biotechnology (ICCEIB) Preface. Industrial & Engineering Chemistry Research, 2019, 58, 507-509.	3.7	2
110	Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: Effects of catalyst preparation technique. Journal of Environmental Management, 2019, 234, 404-411.	7.8	31
111	Surfactant assisted CaO-based sorbent synthesis and their application to high-temperature CO2 capture. Powder Technology, 2019, 344, 208-221.	4.2	19
112	Synthesis and characterization of a La Ni/ \hat{l} ±-Al2O3 catalyst and its use in pyrolysis of glycerol to syngas. Renewable Energy, 2019, 132, 1389-1401.	8.9	25
113	Optimization of renewable hydrogen-rich syngas production from catalytic reforming of greenhouse gases (CH4 and CO2) over calcium iron oxide supported nickel catalyst. Journal of the Energy Institute, 2019, 92, 177-194.	5. 3	30
114	An assessment of the longevity of samarium cobalt trioxide perovskite catalyst during the conversion of greenhouse gases into syngas. Journal of Cleaner Production, 2018, 185, 576-587.	9.3	13
115	An Insight of Synergy between <i>Pseudomonas aeruginosa</i> and <i>Klebsiella variicola</i> in a Microbial Fuel Cell. ACS Sustainable Chemistry and Engineering, 2018, 6, 4130-4137.	6.7	54
116	Enhanced Current Generation Using Mutualistic Interaction of Yeast-Bacterial Coculture in Dual Chamber Microbial Fuel Cell. Industrial & Engineering Chemistry Research, 2018, 57, 813-821.	3.7	46
117	Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation. Research on Chemical Intermediates, 2018, 44, 3849-3865.	2.7	101
118	Pyrolysis production of fruit peel biochar for potential use in treatment of palm oil mill effluent. Journal of Environmental Management, 2018, 213, 400-408.	7.8	135
119	Oil palm waste: An abundant and promising feedstock for microwave pyrolysis conversion into good quality biochar with potential multi-applications. Chemical Engineering Research and Design, 2018, 115, 57-69.	5 . 6	234
120	Recent Advances in Photocatalytic Treatment of Palm Oil Mill Effluent (POME): A Review. International Journal of Engineering and Technology(UAE), 2018, 7, 389.	0.3	0
121	Photoelectrochemical reduction of carbon dioxide to methanol on p-type CuFe2O4 under visible light irradiation. International Journal of Hydrogen Energy, 2018, 43, 18185-18193.	7.1	55
122	Optimization of co-culture inoculated microbial fuel cell performance using response surface methodology. Journal of Environmental Management, 2018, 225, 242-251.	7.8	41
123	Experimental evaluation and empirical modelling of palm oil mill effluent steam reforming. International Journal of Hydrogen Energy, 2018, 43, 15784-15793.	7.1	18
124	Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste. Energy, 2018, 162, 309-317.	8.8	116
125	Microwave pyrolysis with KOH/NaOH mixture activation: A new approach to produce micro-mesoporous activated carbon for textile dye adsorption. Bioresource Technology, 2018, 266, 1-10.	9.6	213
126	Syngas Production from Catalytic CO2 Reforming of CH4 over CaFe2O4 Supported Ni and Co Catalysts: Full Factorial Design Screening. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 57-73.	1.1	10

0.1

#	Article	IF	Citations
127	Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 236.	1.1	9
128	Augmentation of air cathode microbial fuel cell performance using wild type Klebsiella variicola. RSC Advances, 2017, 7, 4798-4805.	3.6	50
129	Modelling and optimization of syngas production by methane dry reforming over samarium oxide supported cobalt catalyst: response surface methodology and artificial neural networks approach. Clean Technologies and Environmental Policy, 2017, 19, 1181-1193.	4.1	36
130	Catalytic pyrolysis of glycerol into syngas over ceria-promoted Ni/α-Al2O3 catalyst. Renewable Energy, 2017, 107, 223-234.	8.9	28
131	Catalytic conversion of methane and carbon dioxide (greenhouse gases) into syngas over samarium-cobalt-trioxides perovskite catalyst. Journal of Cleaner Production, 2017, 148, 202-211.	9.3	37
132	Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO 2 and UV/ZnO photocatalytic systems: A comparative study. Journal of Environmental Management, 2017, 196, 674-680.	7.8	42
133	Electrogenic and Antimethanogenic Properties of (i>Bacillus cereus (li>for Enhanced Power Generation in Anaerobic Sludge-Driven Microbial Fuel Cells. Energy & Energy & 2017, 31, 6132-6139.	5.1	52
134	Ultrasound Driven Biofilm Removal for Stable Power Generation in Microbial Fuel Cell. Energy & Samp; Fuels, 2017, 31, 968-976.	5.1	44
135	Catalytic ethylene production from ethanol dehydration over non-modified and phosphoric acid modified Zeolite H-Y (80) catalysts. Fuel Processing Technology, 2017, 158, 85-95.	7.2	36
136	Syngas production via methane dry reforming: A novel application of SmCoO3 perovskite catalyst. Journal of Natural Gas Science and Engineering, 2017, 37, 435-448.	4.4	33
137	Correlation of power generation with time-course biofilm architecture using Klebsiella variicola in dual chamber microbial fuel cell. International Journal of Hydrogen Energy, 2017, 42, 25933-25941.	7.1	26
138	Kinetics and mechanistic studies of CO-rich hydrogen production by CH4/CO2 reforming over Praseodymia supported cobalt catalysts. International Journal of Hydrogen Energy, 2017, 42, 28408-28424.	7.1	12
139	Modeling of thermally-coupled monolithic membrane reformer for vehicular hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 26308-26319.	7.1	4
140	Photocatalytic restoration of liquid effluent from oil palm agroindustry in Malaysia using tungsten oxides catalyst. Journal of Cleaner Production, 2017, 162, 205-219.	9.3	50
141	Photocatalytic degradation of palm oil mill effluent over ultraviolet-responsive titania: Successive assessments of significance factors and process optimization. Journal of Cleaner Production, 2017, 142, 2073-2083.	9.3	31
142	Renewable syngas production from thermal cracking of glycerol over praseodymium-promoted Ni/Al 2 O 3 catalyst. Applied Thermal Engineering, 2017, 112, 871-880.	6.0	15
143	Greenhouse gases mitigation by CO2 reformingÂof methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst. Clean Technologies and Environmental Policy, 2017, 19, 795-807.	4.1	18
144	Hydrogen Production From catalytic reforming of greenhouse gases (CO ₂ and) Tj ETQq0 0 0 rgBT	/Overlock 0.1	10 Tf 50 67 Td 0

9

Environmental Management, 2017, 21, 1051.

#	Article	IF	Citations
145	Carbon Nanotube-Modified MnO ₂ : An Efficient Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 7637-7644.	1.5	16
146	Performance of Klebsiella oxytocato generate electricity from POME in microbial fuel cell. MATEC Web of Conferences, 2016, 38, 03004.	0.2	10
147	A study on the kinetics of syngas production from glycerol over alumina-supported samarium–nickel catalyst. International Journal of Hydrogen Energy, 2016, 41, 10568-10577.	7.1	17
148	Electricity generation form pretreated palm oil mill effluent using Klebsiella Variicola as an inoculum in Microbial fuel cell. , 2016 , , .		6
149	Non-isothermal kinetics and mechanistic study of thermal decomposition of light rare earth metal nitrate hydrates using thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2016, 125, 423-435.	3.6	21
150	Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts. International Journal of Hydrogen Energy, 2016, 41, 11119-11130.	7.1	52
151	Biorefinery for the Production of Biodiesel, Hydrogen and Synthesis Gas Integrated with CHP from Oil Palm in Malaysia. Chemical Product and Process Modeling, 2016, 11, 305-314.	0.9	5
152	Syngas production from CO 2 reforming of methane over neodymium sesquioxide supported cobalt catalyst. Journal of Natural Gas Science and Engineering, 2016, 34, 873-885.	4.4	48
153	Recovery of diesel-like fuel from waste palm oil by pyrolysis using a microwave heated bed of activated carbon. Energy, 2016, 115, 791-799.	8.8	111
154	Optimization of photocatalytic degradation of palm oil mill effluent in UV/ZnO system based on response surface methodology. Journal of Environmental Management, 2016, 184, 487-493.	7.8	31
155	Photo-polishing of POME into CH4-lean biogas over the UV-responsive ZnO photocatalyst. Chemical Engineering Journal, 2016, 300, 127-138.	12.7	50
156	Catalytic performance of ceria-supported cobalt catalyst for CO-rich hydrogen production from dry reforming of methane. International Journal of Hydrogen Energy, 2016, 41, 198-207.	7.1	80
157	Production of CO-rich hydrogen from methane dry reforming over lanthania-supported cobalt catalyst: Kinetic and mechanistic studies. International Journal of Hydrogen Energy, 2016, 41, 4603-4615.	7.1	7 5
158	Potential of empty fruit bunch clinker as a support for nickel and cobalt catalysts in methane dry reforming: waste to wealth approach. Journal of the Taiwan Institute of Chemical Engineers, 2016, 62, 76-83.	5.3	6
159	Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 2016, 286, 282-290.	12.7	63
160	Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation. Journal of Cleaner Production, 2016, 112, 1128-1135.	9.3	50
161	Tea dust as a potential low-cost adsorbent for the removal of crystal violet from aqueous solution. Desalination and Water Treatment, 2016, 57, 14728-14738.	1.0	34
162	Production of CO-rich Hydrogen Gas from Methane Dry Reforming over Co/CeO2 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 2016, 11, 210-219.	1.1	16

#	Article	IF	Citations
163	Samarium Promoted Ni/Al2O3 Catalysts for Syngas Production from Glycerol Pyrolysis. Bulletin of Chemical Reaction Engineering and Catalysis, 2016, 11, 238-244.	1.1	9
164	Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Applied Catalysis B: Environmental, 2015, 176-177, 601-617.	20.2	149
165	A novel photomineralization of POME over UV-responsive TiO ₂ photocatalyst: kinetics of POME degradation and gaseous product formations. RSC Advances, 2015, 5, 53100-53110.	3.6	49
166	Enzymatic Conversion of Glycerol to Glyceric Acid with Immobilised Laccase in Na-Alginate Matrix. Procedia Chemistry, 2015, 16, 632-639.	0.7	13
167	Influence of nutrient addition on the bioethanol yield from oil palm trunk sap fermented by Saccharomyces cerevisiae. Journal of Industrial and Engineering Chemistry, 2015, 23, 213-217.	5.8	20
168	Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity. Catalysis Science and Technology, 2015, 5, 2522-2531.	4.1	245
169	CO2 reforming of glycerol over La-Ni/Al2O3 catalyst: A longevity evaluative study. Journal of Energy Chemistry, 2015, 24, 366-373.	12.9	30
170	Kinetic studies of the esterification of pure and dilute acrylic acid with 2-ethyl hexanol catalysed by Amberlyst 15. Chemical Engineering Science, 2015, 129, 116-125.	3.8	39
171	Photocatalytic-Fenton Degradation of Glycerol Solution over Visible Light-Responsive CuFe2O4. Water, Air, and Soil Pollution, 2015, 226, 1.	2.4	19
172	Syngas production from CO 2 reforming of methane over ceria supported cobalt catalyst: Effects of reactants partial pressure. Journal of Natural Gas Science and Engineering, 2015, 27, 1016-1023.	4.4	53
173	Process Modelling, Thermodynamic Analysis and Optimization of Dry Reforming, Partial Oxidation and Auto-Thermal Methane Reforming for Hydrogen and Syngas production. Chemical Product and Process Modeling, 2015, 10, 211-220.	0.9	20
174	Successive optimisation of waste cooking oil transesterification in a continuous microwave assisted reactor. RSC Advances, 2015, 5, 76743-76751.	3.6	14
175	Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box–Behnken design. Journal of Industrial and Engineering Chemistry, 2015, 32, 246-258.	5.8	70
176	Photocatalytic reduction of CO2 into methanol over CuFe2O4/TiO2 under visible light irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116, 589-604.	1.7	53
177	Synthesis and characterization of a CaFe ₂ O ₄ catalyst for oleic acid esterification. RSC Advances, 2015, 5, 100362-100368.	3.6	27
178	Enhanced power generation using controlled inoculum from palm oil mill effluent fed microbial fuel cell. Fuel, 2015, 143, 72-79.	6.4	53
179	Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 2015, 3, 261-270.	6.7	49
180	Syngas production from glycerol-dry(CO2) reforming over La-promoted Ni/Al2O3 catalyst. Renewable Energy, 2015, 74, 441-447.	8.9	83

#	Article	IF	CITATIONS
181	Synthesis and characterisation of cement clinker-supported nickel catalyst for glycerol dry reforming. Chemical Engineering Journal, 2014, 255, 245-256.	12.7	44
182	Phototreatment of Palm Oil Mill Effluent (POME) over Cu/TiO2 Photocatalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 2014, 9, 121-127.	1.1	9
183	Characterization of La-promoted Ni/Al2O3 catalysts for hydrogen production from glycerol dry reforming. Journal of Energy Chemistry, 2014, 23, 15-21.	12.9	45
184	Synthesis and characterization of CuO/C catalyst for the esterification of free fatty acid in rubber seed oil. Fuel, 2014, 120, 195-201.	6.4	42
185	Production of CO-rich hydrogen gas from glycerol dry reforming over La-promoted Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 2014, 39, 6927-6936.	7.1	66
186	Catalytic performance of cement clinker supported nickel catalyst in glycerol dry reforming. Journal of Energy Chemistry, 2014, 23, 645-656.	12.9	28
187	Biodiesel Production from Rubber Seed Oil using Activated Cement Clinker as Catalyst. Procedia Engineering, 2013, 53, 13-19.	1.2	64
188	Characterization of Industrial Pt-Sn/Al2O3 Catalyst and Transient Product Formations during Propane Dehydrogenation. Bulletin of Chemical Reaction Engineering and Catalysis, 2013, 8, .	1.1	3
189	Hydrogen Production via Glycerol Dry Reforming over La-Ni/Al2O3 Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 2013, 8, 160-166.	1.1	11
190	Application of Cement Clinker as Ni-Catalyst Support for Glycerol Dry Reforming. Bulletin of Chemical Reaction Engineering and Catalysis, 2013, 8, .	1.1	6
191	Syngas production from CH4 dry reforming over Co–Ni/Al2O3 catalyst: Coupled reaction-deactivation kinetic analysis and the effect of O2 co-feeding on H2:CO ratio. International Journal of Hydrogen Energy, 2012, 37, 17019-17026.	7.1	31
192	Thermodynamic analysis of glycerol-steam reforming in the presence of CO2 or H2 as carbon gasifying agent. International Journal of Hydrogen Energy, 2012, 37, 10101-10110.	7.1	22
193	Carbon deposition and gasification kinetics of used lanthanide-promoted Co-Ni/Al2O3 catalysts from CH4 dry reforming. Catalysis Communications, 2012, 26, 183-188.	3.3	48
194	Steam reforming of glycerol over Ni/Al2O3 catalyst. Catalysis Today, 2011, 178, 25-33.	4.4	91
195	Carbon deposition on bimetallic Co–Ni/Al2O3 catalyst during steam reforming of glycerol. Catalysis Today, 2011, 164, 268-274.	4.4	65
196	Kinetic study of methane CO2 reforming on Co–Ni/Al2O3 and Ce–Co–Ni/Al2O3 catalysts. Catalysis Today, 2011, 164, 221-226.	4.4	99
197	Evaluation of lanthanide-group promoters on Co–Ni/Al2O3 catalysts for CH4 dry reforming. Journal of Molecular Catalysis A, 2011, 344, 28-36.	4.8	76
198	Oxidative CO ₂ Reforming of Methane on Alumina-Supported Coâ^'Ni Catalyst. Industrial & Lamp; Engineering Chemistry Research, 2010, 49, 10450-10458.	3.7	45

#	Article	IF	CITATIONS
199	H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catalysis Communications, 2010, 12, 292-298.	3.3	94
200	Glycerol Steam Reforming over Bimetallic Coâ^'Ni/Al ₂ O ₃ . Industrial & Engineering Chemistry Research, 2010, 49, 10804-10817.	3.7	116
201	Propane Fuel Cells Using Phosphoric-Acid-Doped Polybenzimidazole Membranes. Journal of Physical Chemistry B, 2005, 109, 13036-13042.	2.6	25
202	Microwave Co-Pyrolysis of Waste Cooking Oil and Polystyrene-Based Plastic Waste., 0, , .		0
203	Hydrothermal Treatment of Palm Oil Mill Effluent (POME) under Oxidative and Non-oxidative Conditions. IOP Conference Series: Materials Science and Engineering, 0, 965, 012002.	0.6	1