
Michelle J Cox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824455/publications.pdf

Version: 2024-02-01

MICHELLELCOX

#	Article	IF	CITATIONS
1	Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy inÂmultiple myeloma. Blood, 2022, 139, 3708-3721.	1.4	53
2	Challenges of chimeric antigen receptor T-cell therapy in chronic lymphocytic leukemia: lessons learned. Experimental Hematology, 2022, 108, 1-7.	0.4	9
3	Dynamic Imaging of Chimeric Antigen Receptor T Cells with [¹⁸ F]Tetrafluoroborate Positron Emission Tomography/Computed Tomography. Journal of Visualized Experiments, 2022, , .	0.3	0
4	GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity. Leukemia, 2022, 36, 1635-1645.	7.2	12
5	Resistance to CART cell therapy: lessons learned from the treatment of hematological malignancies. Leukemia and Lymphoma, 2021, 62, 2052-2063.	1.3	16
6	Leukemic extracellular vesicles induce chimeric antigen receptor TÂcell dysfunction in chronic lymphocytic leukemia. Molecular Therapy, 2021, 29, 1529-1540.	8.2	43
7	Development of a Clinically Relevant Reporter for Chimeric Antigen Receptor T-cell Expansion, Trafficking, and Toxicity. Cancer Immunology Research, 2021, 9, 1035-1046.	3.4	14
8	Favorable Modulation of Chimeric Antigen Receptor T Cells Safety and Efficacy By the Non-Covalent BTK Inhibitor Vecabrutinib. Blood, 2021, 138, 906-906.	1.4	3
9	TNFR2 As a Target to Improve CD19-Directed CART Cell Fitness and Antitumor Activity in Large B Cell Lymphoma. Blood, 2021, 138, 901-901.	1.4	1
10	Optimized Inhibition of GM-CSF in Preclinical Models of Anti-CD19 Chimeric Antigen Receptor T Cell Therapy. Blood, 2021, 138, 2777-2777.	1.4	0
11	The Impact of Prior Treatment with a CD19 Targeting Monoclonal Antibody on Subsequent Treatment with CD19 Targeting CART Cell Therapy in Preclinical Models. Blood, 2021, 138, 2412-2412.	1.4	2
12	Targeting Cancer Associated Fibroblasts in the Bone Marrow Prevents Resistance to Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma. Biology of Blood and Marrow Transplantation, 2020, 26, S224.	2.0	1
13	Efficient Gene Editing of CART Cells with CRISPR-Cas12a for Enhanced Antitumor Efficacy. Blood, 2020, 136, 6-7.	1.4	6
14	Axl-RTK Inhibition Modulates Monocyte Immune Response to Enhance the Anti-Tumor Effects of CD19 Redirected Chimeric Antigen Receptor T Cells in Preclinical Models. Blood, 2020, 136, 28-29.	1.4	0
15	Vesicular Stomatitis Virus (VSV) Engineered to Express CD19 Stimulates Anti-CD19 Chimeric Antigen Receptor Modified T Cells and Promotes Their Anti-Tumor Effects. Blood, 2020, 136, 30-31.	1.4	1
16	Using CRISPR/Cas9 to Knock Out GM-CSF in CAR-T Cells. Journal of Visualized Experiments, 2019, , .	0.3	24
17	GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood, 2019, 133, 697-709.	1.4	408
18	Targeting Cancer Associated Fibroblasts in the Bone Marrow Prevents Resistance to Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma. Blood, 2019, 134, 865-865.	1.4	12

MICHELLE J COX

#	Article	IF	CITATIONS
19	Development of a Sensitive and Efficient Reporter Platform for the Detection of Chimeric Antigen Receptor T Cell Expansion, Trafficking, and Toxicity. Blood, 2019, 134, 53-53.	1.4	2
20	Circulating Extracellular Vesicles Induce Chimeric Antigen Receptor T Cell Dysfunction in Chronic Lymphocytic Leukemia (CLL). Blood, 2019, 134, 679-679.	1.4	1
21	Improved Anti-Tumor Response of Chimeric Antigen Receptor T Cell (CART) Therapy after GM-CSF Inhibition Is Mechanistically Supported By a Novel Direct Interaction of GM-CSF with Activated Carts. Blood, 2019, 134, 3868-3868.	1.4	6
22	Targeting of CD19 By Tafasitamab Does Not Impair CD19 Directed Chimeric Antigen Receptor T Cell Activity in Vitro. Blood, 2019, 134, 2859-2859.	1.4	9