
Kun Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3824018/publications.pdf Version: 2024-02-01

KIIN REN

#	Article	IF	CITATIONS
1	Uniform Ti-doped Sb2Te3 materials for high-speed phase change memory applications. Applied Physics Letters, 2014, 104, .	3.3	77
2	Ovonic threshold switching selectors for three-dimensional stackable phase-change memory. MRS Bulletin, 2019, 44, 715-720.	3.5	70
3	Ti10Sb60Te30 for phase change memory with high-temperature data retention and rapid crystallization speed. Applied Physics Letters, 2012, 100, .	3.3	69
4	W-Sb-Te phase-change material: A candidate for the trade-off between programming speed and data retention. Applied Physics Letters, 2012, 101, .	3.3	56
5	N-doped Sb2Te phase change materials for higher data retention. Journal of Alloys and Compounds, 2011, 509, 10105-10109.	5.5	46
6	Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory. Applied Physics Letters, 2018, 112, .	3.3	45
7	Direct observation of partial disorder and zipperlike transition in crystalline phase change materials. Physical Review Materials, 2019, 3, .	2.4	34
8	Controllable SET process in O-Ti-Sb-Te based phase change memory for synaptic application. Applied Physics Letters, 2018, 112, 073106.	3.3	31
9	Sc-Centered Octahedron Enables High-Speed Phase Change Memory with Improved Data Retention and Reduced Power Consumption. ACS Applied Materials & Interfaces, 2019, 11, 10848-10855.	8.0	31
10	Electrical switching properties and structural characteristics of GeSe–GeTe films. Nanoscale, 2019, 11, 1595-1603.	5.6	30
11	Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale, 2021, 13, 2324-2332.	5.6	30
12	High thermal stability and fast speed phase change memory by optimizing GeSbTe with Scandium doping. Scripta Materialia, 2019, 164, 25-29.	5.2	24
13	Mineralogical phase separation and leaching characteristics of typical toxic elements in Chinese lignite fly ash. Science of the Total Environment, 2020, 708, 135095.	8.0	22
14	Atomic scale insight into the effects of Aluminum doped Sb2Te for phase change memory application. Scientific Reports, 2018, 8, 15136.	3.3	15
15	Study on the thermal stability improvement of GeTe by Al doping. Applied Physics Letters, 2013, 103, .	3.3	14
16	Crystal-Like Glassy Structure in Sc-Doped BiSbTe Ensuring Excellent Speed and Power Efficiency in Phase Change Memory. ACS Applied Materials & Interfaces, 2020, 12, 16601-16608.	8.0	11
17	Study on the crystallization behaviors of Si2Sb2Tex materials. Scripta Materialia, 2011, 64, 685-688.	5.2	10
18	Carbon layer application in phase change memory to reduce power consumption and atomic migration. Materials Letters, 2017, 206, 52-55.	2.6	10

Kun Ren

#	Article	IF	CITATIONS
19	Reducing structural change in the phase transition of Ge-doped Bi _{0.5} Sb _{1.5} Te ₃ to enable high-speed and low-energy memory switching. Journal of Materials Chemistry C, 2019, 7, 11813-11823.	5.5	10
20	Study on the phase change behavior of nitrogen doped Bi 2 Te 3 films. Journal of Alloys and Compounds, 2018, 754, 227-231.	5.5	9
21	Constructing reliable PCM and OTS devices with an interfacial carbon layer. Journal of Materials Science: Materials in Electronics, 2019, 30, 20037-20042.	2.2	7
22	In-situ observation of Ge2Sb2Te5 crystallization at the passivated interface. Ceramics International, 2019, 45, 19542-19546.	4.8	6
23	Logical devices based on the antiferromagnetic-antimeron in a ferromagnet nanodot with gain. Applied Physics Letters, 2021, 118, 172410.	3.3	3
24	Defect Engineering in Antimony Telluride Phase-Change Materials. Materials Science Forum, 0, 944, 607-612.	0.3	0