
Tony Nolan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3823838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A mosquito small RNA genomics resource reveals dynamic evolution and host responses to viruses and transposons. Genome Research, 2021, 31, 512-528.	5.5	29
2	Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genetics, 2021, 17, e1009321.	3.5	72
3	Ultra-conserved sequences in the genomes of highly diverse <i>Anopheles</i> mosquitoes, with implications for malaria vector control. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	3
4	CRISPR-mediated knock-in of transgenes into the malaria vector <i>Anopheles funestus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	8
5	Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field. Nature Communications, 2021, 12, 4589.	12.8	59
6	CRISPR/Cas9 modified An. gambiae carrying kdr mutation L1014F functionally validate its contribution in insecticide resistance and combined effect with metabolic enzymes. PLoS Genetics, 2021, 17, e1009556.	3.5	27
7	Anopheles gambiae Genome Conservation as a Resource for Rational Gene Drive Target Site Selection. Insects, 2021, 12, 97.	2.2	8
8	Control of malaria-transmitting mosquitoes using gene drives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190803.	4.0	35
9	Resistance to a CRISPR-based gene drive at an evolutionarily conserved site is revealed by mimicking genotype fixation. PLoS Genetics, 2021, 17, e1009740.	3.5	21
10	Transcriptional variation of sensory-related genes in natural populations of Aedes albopictus. BMC Genomics, 2020, 21, 547.	2.8	6
11	A male-biased sex-distorter gene drive for the human malaria vector Anopheles gambiae. Nature Biotechnology, 2020, 38, 1054-1060.	17.5	153
12	Detecting the population dynamics of an autosomal sex ratio distorter transgene in malaria vector mosquitoes. Journal of Applied Ecology, 2020, 57, 2086-2096.	4.0	14
13	Toward the Definition of Efficacy and Safety Criteria for Advancing Gene Drive-Modified Mosquitoes to Field Testing. Vector-Borne and Zoonotic Diseases, 2020, 20, 237-251.	1.5	60
14	Nuclease-based gene drives, an innovative tool for insect vector control: advantages and challenges of the technology. Current Opinion in Insect Science, 2020, 39, 77-83.	4.4	17
15	High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Scientific Reports, 2019, 9, 14841.	3.3	26
16	Gene drive for population genetic control: non-functional resistance and parental effects. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191586.	2.6	39
17	Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis. Scientific Reports, 2019, 9, 5158.	3.3	11
18	Safe Driving: CRISPR and the Gene Drive Landscape. CRISPR Journal, 2018, 1, 16-18.	2.9	0

TONY NOLAN

#	Article	IF	CITATIONS
19	Molecular tools and genetic markers for the generation of transgenic sexing strains in Anopheline mosquitoes. Parasites and Vectors, 2018, 11, 660.	2.5	10
20	A CRISPR–Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes. Nature Biotechnology, 2018, 36, 1062-1066.	17.5	648
21	Cross-Species Y Chromosome Function Between Malaria Vectors of the <i>Anopheles gambiae</i> Species Complex. Genetics, 2017, 207, 729-740.	2.9	18
22	Requirements for Driving Antipathogen Effector Genes into Populations of Disease Vectors by Homing. Genetics, 2017, 205, 1587-1596.	2.9	62
23	Rapid evolution of female-biased genes among four species of <i>Anopheles</i> malaria mosquitoes. Genome Research, 2017, 27, 1536-1548.	5.5	60
24	Crystallographic analyses illustrate significant plasticity and efficient recoding of meganuclease target specificity. Nucleic Acids Research, 2017, 45, 8621-8634.	14.5	12
25	The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression. Developmental and Comparative Immunology, 2017, 67, 257-265.	2.3	28
26	How to handle gene drives in arthropods?. Pathogens and Global Health, 2017, 111, 403-403.	2.3	0
27	Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus. BMC Genomics, 2017, 18, 770.	2.8	30
28	The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito. PLoS Genetics, 2017, 13, e1007039.	3.5	243
29	Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2114-23.	7.1	92
30	A CRISPR-Cas9 sex-ratio distortion system for genetic control. Scientific Reports, 2016, 6, 31139.	3.3	160
31	A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34, 78-83.	17.5	985
32	Tools for <i>Anopheles gambiae</i> Transgenesis. G3: Genes, Genomes, Genetics, 2015, 5, 1151-1163.	1.8	95
33	The germline of the malaria mosquito produces abundant miRNAs, endo-siRNAs, piRNAs and 29-nt small RNAs. BMC Genomics, 2015, 16, 100.	2.8	44
34	Highly evolvable malaria vectors: The genomes of 16 <i>Anopheles</i> mosquitoes. Science, 2015, 347, 1258522.	12.6	492
35	Reprogramming homing endonuclease specificity through computational design and directed evolution. Nucleic Acids Research, 2014, 42, 2564-2576.	14.5	31
36	Disruption of aminergic signalling reveals novel compounds with distinct inhibitory effects on mosquito reproduction, locomotor function and survival. Scientific Reports, 2014, 4, 5526.	3.3	49

TONY NOLAN

#	Article	IF	CITATIONS
37	Phenylalanine Metabolism Regulates Reproduction and Parasite Melanization in the Malaria Mosquito. PLoS ONE, 2014, 9, e84865.	2.5	65
38	Sex-, tissue- and stage-specific transgene expression , 2014, , 29-50.		0
39	Identifying an essential interaction between malaria parasites and erythrocytes unlocks the door to promising vaccine targets. Pathogens and Global Health, 2012, 106, 64-64.	2.3	4
40	Mosquito Transgenic Technologies to Reduce Plasmodium Transmission. Methods in Molecular Biology, 2012, 923, 601-622.	0.9	35
41	Analysis of Two Novel Midgut-Specific Promoters Driving Transgene Expression in Anopheles stephensi Mosquitoes. PLoS ONE, 2011, 6, e16471.	2.5	40
42	Transcription Regulation of Sex-Biased Genes during Ontogeny in the Malaria Vector Anopheles gambiae. PLoS ONE, 2011, 6, e21572.	2.5	82
43	Developing transgenic Anopheles mosquitoes for the sterile insect technique. Genetica, 2011, 139, 33-39.	1.1	44
44	A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics, 2011, 12, 296.	2.8	169
45	Transcript profiles of long- and short-lived adults implicate protein synthesis in evolved differences in ageing in the nematode Strongyloides ratti. Mechanisms of Ageing and Development, 2009, 130, 167-172.	4.6	12
46	The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A. Nucleic Acids Research, 2008, 36, 532-538.	14.5	32
47	Post-integration behavior of a Minos transposon in the malaria mosquito Anopheles stephensi. Molecular Genetics and Genomics, 2007, 278, 575-584.	2.1	17
48	Homology effects inNeurospora crassa. FEMS Microbiology Letters, 2006, 254, 182-189.	1.8	34
49	An Anopheles gambiae salivary gland promoter analysis in Drosophila melanogaster and Anopheles stephensi. Insect Molecular Biology, 2005, 14, 207-216.	2.0	34
50	The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Research, 2005, 33, 1564-1573.	14.5	97
51	The long hand of the small RNAs reaches into several levels of gene regulation. Biochemistry and Cell Biology, 2004, 82, 472-481.	2.0	4
52	piggyBac-mediated Germline Transformation of the Malaria Mosquito Anopheles stephensi Using the Red Fluorescent Protein dsRED as a Selectable Marker. Journal of Biological Chemistry, 2002, 277, 8759-8762.	3.4	87
53	Bee Venom Phospholipase Inhibits Malaria Parasite Development in Transgenic Mosquitoes. Journal of Biological Chemistry, 2002, 277, 40839-40843.	3.4	168
54	Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature, 2000, 405, 959-962.	27.8	344

#	Article	IF	CITATIONS
55	Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2157-2162.	7.1	61