Bruce A Menge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3823401/publications.pdf Version: 2024-02-01

RDUCE A MENCE

#	Article	IF	CITATIONS
1	Challenges in the Quest for Keystones. BioScience, 1996, 46, 609-620.	4.9	1,557
2	Community Regulation: Variation in Disturbance, Competition, and Predation in Relation to Environmental Stress and Recruitment. American Naturalist, 1987, 130, 730-757.	2.1	1,343
3	Species Diversity Gradients: Synthesis of the Roles of Predation, Competition, and Temporal Heterogeneity. American Naturalist, 1976, 110, 351-369.	2.1	967
4	Organization of the New England Rocky Intertidal Community: Role of Predation, Competition, and Environmental Heterogeneity. Ecological Monographs, 1976, 46, 355-393.	5.4	850
5	Indirect Effects in Marine Rocky Intertidal Interaction Webs: Patterns and Importance. Ecological Monographs, 1995, 65, 21-74.	5.4	621
6	The Keystone Species Concept: Variation in Interaction Strength in a Rocky Intertidal Habitat. Ecological Monographs, 1994, 64, 249-286.	5.4	611
7	Community Development and Persistence in a Low Rocky Intertidal Zone. Ecological Monographs, 1978, 48, 67-94.	5.4	513
8	Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature, 2004, 429, 749-754.	27.8	492
9	Role of scale and environmental factors in regulation of community structure. Trends in Ecology and Evolution, 1990, 5, 52-57.	8.7	420
10	Top-down and bottom-up community regulation in marine rocky intertidal habitats. Journal of Experimental Marine Biology and Ecology, 2000, 250, 257-289.	1.5	397
11	MOSAIC PATTERNS OF THERMAL STRESS IN THE ROCKY INTERTIDAL ZONE: IMPLICATIONS FOR CLIMATE CHANGE. Ecological Monographs, 2006, 76, 461-479.	5.4	392
12	Community Organization in Temperate and Tropical Rocky Intertidal Habitats: Prey Refuges in Relation to Consumer Pressure Gradients. Ecological Monographs, 1981, 51, 429-450.	5.4	353
13	Community Regulation: Under What Conditions Are Bottom-Up Factors Important on Rocky Shores?. Ecology, 1992, 73, 755-765.	3.2	343
14	Intensification and spatial homogenization of coastal upwelling under climate change. Nature, 2015, 518, 390-394.	27.8	331
15	Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3719-3724.	7.1	286
16	Predation intensity in a rocky intertidal community. Oecologia, 1978, 34, 1-16.	2.0	267
17	A LATITUDINAL GRADIENT IN RECRUITMENT OF INTERTIDAL INVERTEBRATES IN THE NORTHEAST PACIFIC OCEAN. Ecology, 2001, 82, 1799-1813.	3.2	263
18	Predation intensity in a rocky intertidal community. Oecologia, 1978, 34, 17-35.	2.0	253

#	Article	IF	CITATIONS
19	QUANTIFYING VARIATION IN THE STRENGTHS OF SPECIES INTERACTIONS. Ecology, 1999, 80, 2206-2224.	3.2	220
20	The Role of Indirect Effects in Food Webs. , 1996, , 371-395.		217
21	Keystone Predation and Interaction Strength: Interactive Effects of Predators on Their Main Prey. Ecological Monographs, 1996, 66, 409-429.	5.4	213
22	Relative importance of recruitment and other causes of variation in rocky intertidal community structure. Journal of Experimental Marine Biology and Ecology, 1991, 146, 69-100.	1.5	194
23	TOP-DOWN AND BOTTOM-UP REGULATION OF NEW ZEALAND ROCKY INTERTIDAL COMMUNITIES. Ecological Monographs, 1999, 69, 297-330.	5.4	181
24	SPECIES INTERACTION STRENGTH: TESTING MODEL PREDICTIONS ALONG AN UPWELLING GRADIENT. Ecological Monographs, 2004, 74, 663-684.	5.4	166
25	RECRUITMENT VS. POSTRECRUITMENT PROCESSES AS DETERMINANTS OF BARNACLE POPULATION ABUNDANCE. Ecological Monographs, 2000, 70, 265-288.	5.4	157
26	Brood or broadcast? The adaptive significance of different reproductive strategies in the two intertidal sea stars Leptasterias hexactis and Pisaster ochraceus. Marine Biology, 1975, 31, 87-100.	1.5	153
27	Rocky intertidal oceanography: An association between community structure and nearshore phytoplankton concentration. Limnology and Oceanography, 1997, 42, 57-66.	3.1	150
28	Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. Journal of Experimental Marine Biology and Ecology, 2007, 351, 83-91.	1.5	141
29	Role of Resource Allocation, Aggression and Spatial Heterogeneity in Coexistence of Two Competing Intertidal Starfish. Ecological Monographs, 1974, 44, 189-209.	5.4	135
30	Components of predation intensity in the low zone of the New England rocky intertidal region. Oecologia, 1983, 58, 141-155.	2.0	133
31	Diversity, heterogeneity and consumer pressure in a tropical rocky intertidal community. Oecologia, 1985, 65, 394-405.	2.0	130
32	Competition for Food between Two Intertidal Starfish Species and its Effect on Body Size and Feeding. Ecology, 1972, 53, 635-644.	3.2	129
33	Mussel Disturbance Dynamics: Signatures of Oceanographic Forcing from Local Interactions. American Naturalist, 2003, 161, 889-904.	2.1	119
34	INTERTIDAL MUSSELS EXHIBIT ENERGETIC TRADE-OFFS BETWEEN REPRODUCTION AND STRESS RESISTANCE. Ecological Monographs, 2008, 78, 387-402.	5.4	119
35	Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable <scp>pH</scp> environment. Molecular Ecology, 2013, 22, 1609-1625.	3.9	118
36	Interacting environmental mosaics drive geographic variation in mussel performance and predation vulnerability. Ecology Letters, 2016, 19, 771-779.	6.4	118

#	Article	IF	CITATIONS
37	Dynamics of coastal metaâ€ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecological Monographs, 2013, 83, 283-310.	5.4	116
38	Sea Star Wasting Disease in the Keystone Predator Pisaster ochraceus in Oregon: Insights into Differential Population Impacts, Recovery, Predation Rate, and Temperature Effects from Long-Term Research. PLoS ONE, 2016, 11, e0153994.	2.5	114
39	Barnacle reproductive hotspots linked to nearshore ocean conditions. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 10534-10539.	7.1	105
40	Longâ€ŧerm declines in an intertidal foundation species parallel shifts in community composition. Global Change Biology, 2017, 23, 341-352.	9.5	105
41	Response of a rocky intertidal ecosystem engineer and community dominant to climate change. Ecology Letters, 2008, 11, 151-162.	6.4	102
42	Wind-driven inner-shelf circulation off central Oregon during summer. Journal of Geophysical Research, 2005, 110, .	3.3	100
43	Climatic variation alters supplyâ€side ecology: impact of climate patterns on phytoplankton and mussel recruitment. Ecological Monographs, 2009, 79, 379-395.	5.4	93
44	INTERHEMISPHERIC COMPARISON OF RECRUITMENT TO INTERTIDAL COMMUNITIES: PATTERN PERSISTENCE AND SCALES OF VARIATION. Ecology, 2008, 89, 1308-1322.	3.2	92
45	Fundamental contradictions among observational and experimental estimates of nonâ€trophic species interactions. Ecology, 2018, 99, 557-566.	3.2	89
46	Coexistence between the seastars Asterias vulgaris and A. forbesi in a heterogeneous environment: A non-equilibrium explanation. Oecologia, 1979, 41, 245-272.	2.0	85
47	Inter-hemispheric comparison of bottom-up effects on community structure: Insights revealed using the comparative-experimental approach. Ecological Research, 2002, 17, 1-16.	1.5	78
48	The surf zone: a semi-permeable barrier to onshore recruitment of invertebrate larvae?. Journal of Experimental Marine Biology and Ecology, 2008, 361, 59-74.	1.5	78
49	PHYSIOLOGY OF THE ROCKY INTERTIDAL PREDATOR <i>NUCELLA OSTRINA</i> ALONG AN ENVIRONMENTAL STRESS GRADIENT. Ecology, 2001, 82, 2816-2829.	3.2	74
50	Fifteen degrees of separation: Latitudinal gradients of rocky intertidal biota along the California Current. Limnology and Oceanography, 2006, 51, 2564-2585.	3.1	74
51	Effects of environmental stress on intertidal mussels and their sea star predators. Oecologia, 2008, 156, 671-680.	2.0	74
52	A test of the Menge-Sutherland model of community organization in a tropical rocky intertidal food web. Oecologia, 1986, 71, 75-89.	2.0	72
53	Environmental Stress, Bottom-up Effects, and Community Dynamics: Integrating Molecular-Physiological and Ecological Approaches. Integrative and Comparative Biology, 2002, 42, 892-908.	2.0	72
54	Ecological processes can synchronize marine population dynamics over continental scales. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8281-8286.	7.1	72

#	Article	IF	CITATIONS
55	Are metaâ€ecosystems organized hierarchically? A model and test in rocky intertidal habitats. Ecological Monographs, 2015, 85, 213-233.	5.4	72
56	Climateâ€driven trends and ecological implications of eventâ€scale upwelling in the <scp>C</scp> alifornia <scp>C</scp> urrent <scp>S</scp> ystem. Global Change Biology, 2012, 18, 783-796.	9.5	71
57	Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Scientific Data, 2016, 3, 160087.	5.3	69
58	Linking long-term, large-scale climatic and environmental variability to patterns of marine invertebrate recruitment: Toward explaining "unexplained―variation. Journal of Experimental Marine Biology and Ecology, 2011, 400, 236-249.	1.5	63
59	Thermal indices of upwelling effects on inner-shelf habitats. Progress in Oceanography, 2009, 83, 278-287.	3.2	62
60	Transcriptome profiles link environmental variation and physiological response of <i>Mytilus californianus</i> between Pacific tides. Functional Ecology, 2012, 26, 144-155.	3.6	61
61	Scales of Dispersal and the Biogeography of Marine Predatorâ€Prey Interactions. American Naturalist, 2008, 171, 405-417.	2.1	59
62	SPECIES INTERACTIONS IN INTERTIDAL FOOD WEBS: PREY OR PREDATION REGULATION OF INTERMEDIATE PREDATORS?. Ecology, 2000, 81, 2264-2277.	3.2	56
63	Biogeographic structure of the northeastern Pacific rocky intertidal: the role of upwelling and dispersal to drive patterns. Ecography, 2015, 38, 83-95.	4.5	53
64	Terrestrial ecologists ignore aquatic literature: Asymmetry in citation breadth in ecological publications and implications for generality and progress in ecology. Journal of Experimental Marine Biology and Ecology, 2009, 377, 93-100.	1.5	50
65	Experimental assessment of the effects of shade on an intertidal kelp: Do phytoplankton blooms inhibit growth of open coast macroalgae?. Limnology and Oceanography, 2009, 54, 276-288.	3.1	44
66	Generalizing from experiments: is predation strong or weak in the New England rocky intertidal?. Oecologia, 1991, 88, 1-8.	2.0	39
67	Oceanographic and climatic variation drive topâ€down/bottomâ€up coupling in the Galápagos intertidal metaâ€ecosystem. Ecological Monographs, 2014, 84, 411-434.	5.4	38
68	Remote sensing: generation of longâ€ŧerm kelp bed data sets for evaluation of impacts of climatic variation. Ecology, 2020, 101, e03031.	3.2	38
69	Current reversals as determinants of intertidal recruitment on the central Oregon coast. ICES Journal of Marine Science, 2009, 66, 396-407.	2.5	37
70	Stasis or kinesis? Hidden dynamics of a rocky intertidal macrophyte mosaic revealed by a spatially explicit approach. Journal of Experimental Marine Biology and Ecology, 2005, 314, 3-39.	1.5	34
71	Potential impact of climate-related changes is buffered by differential responses to recruitment and interactions. Ecological Monographs, 2011, 81, 493-509.	5.4	34
72	Connectivity, Dispersal, and Recruitment: Connecting Benthic Communities and the Coastal Ocean. Oceanography, 2019, 32, 50-59.	1.0	34

#	Article	IF	CITATIONS
73	Effects of consumers and enrichment on abundance and diversity of benthic algae in a rocky intertidal community. Journal of Experimental Marine Biology and Ecology, 2009, 369, 155-164.	1.5	33
74	Supply-side ecology, barnacle recruitment, and rocky intertidal community dynamics: Do settlement surface and limpet disturbance matter?. Journal of Experimental Marine Biology and Ecology, 2010, 392, 160-175.	1.5	32
75	Transformative Research Is Not Easily Predicted. Trends in Ecology and Evolution, 2017, 32, 825-834.	8.7	30
76	Context-Dependent Eelgrass–Macroalgae Interactions Along an Estuarine Gradient in the Pacific Northwest, USA. Estuaries and Coasts, 2011, 34, 1169-1181.	2.2	29
77	The complex net effect of reciprocal interactions and recruitment facilitation maintains an intertidal kelp community. Journal of Ecology, 2016, 104, 33-43.	4.0	29
78	Cross-scale variation in top-down and bottom-up control of algal abundance. Journal of Experimental Marine Biology and Ecology, 2007, 347, 8-29.	1.5	28
79	Are large macroalgal blooms necessarily bad? nutrient impacts on seagrass in upwelling-influenced estuaries. , 2015, 25, 1330-1347.		20
80	Ecological subsidies to rocky intertidal communities: Linear or non-linear changes along a consistent geographic upwelling transition?. Journal of Experimental Marine Biology and Ecology, 2011, 409, 361-370.	1.5	19
81	Designing effective reserve networks for nonequilibrium metacommunities. Ecological Applications, 2013, 23, 1488-1503.	3.8	19
82	PHYSIOLOGICAL SNAPSHOTS REFLECT ECOLOGICAL PERFORMANCE OF THE SEA PALM, POSTELSIA PALMAEFORMIS (PHAEOPHYCAEA) ACROSS INTERTIDAL ELEVATION AND EXPOSURE GRADIENTS1. Journal of Phycology, 2006, 42, 548-559.	2.3	18
83	Recruitment facilitation can promote coexistence and buffer population growth in metacommunities. Ecology Letters, 2011, 14, 1201-1210.	6.4	18
84	Ocean acidification research in the â€~post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 185, 33-42.	1.8	18
85	Nearshore chlorophyll-a events and wave-driven transport. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	17
86	Regional processes are stronger determinants of rocky intertidal community dynamics than local biotic interactions. Ecology, 2019, 100, e02763.	3.2	16
87	Do terrestrial ecologists ignore aquatic literature?. Frontiers in Ecology and the Environment, 2009, 7, 182-183.	4.0	15
88	Alternative state? Experimentally induced F ucus canopy persists 38Âyr in an A scophyllum―dominated community. Ecosphere, 2017, 8, e01725.	2.2	15
89	Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Global Change Biology, 2018, 24, 4464-4477.	9.5	13
90	Grazer impacts on algal community structure vary with the coastal upwelling regime. Journal of Experimental Marine Biology and Ecology, 2017, 488, 10-23.	1.5	12

#	Article	IF	CITATIONS
91	Incorporating Context Dependency of Species Interactions in Species Distribution Models. Integrative and Comparative Biology, 2017, 57, 159-167.	2.0	12
92	Testing the intermittent upwelling hypothesis: comment. Ecology, 2019, 100, e02476.	3.2	12
93	Integrating Coastal Oceanic and Benthic Ecological Approaches for Understanding Large-Scale Meta-Ecosystem Dynamics. Oceanography, 2019, 32, 38-49.	1.0	11
94	Increasing instability of a rocky intertidal meta-ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	10
95	<scp>El Niño</scp> and marine heatwaves: Ecological impacts on <scp>Oregon</scp> rocky intertidal kelp communities at local to regional scales. Ecological Monographs, 2022, 92, .	5.4	10
96	2. The Overriding Importance of Environmental Context in Determining the Outcome of Species-Deletion Experiments. , 2003, , 16-43.		8
97	Bottom-up and top-down interactions in coastal interface systems. , 2015, , 157-200.		8
98	Quantitative Biogeography: Large-Scale, Long-Term Change in the Rocky Intertidal Region of the California Current Large Marine Ecosystem. Oceanography, 2019, 32, 26-37.	1.0	8
99	Biogeography of ocean acidification: Differential field performance of transplanted mussels to upwelling-driven variation in carbonate chemistry. PLoS ONE, 2020, 15, e0234075.	2.5	7
100	Keystone predation: traitâ€based or driven by extrinsic processes? Assessment using a comparativeâ€experimental approach. Ecological Monographs, 2021, 91, .	5.4	7
101	A Latitudinal Gradient in Recruitment of Intertidal Invertebrates in the Northeast Pacific Ocean. Ecology, 2001, 82, 1799.	3.2	7
102	Persistent regional variation in populations of a tidepool fish. Journal of Experimental Marine Biology and Ecology, 2007, 346, 8-20.	1.5	6
103	Biogeography of Macrophyte Elemental Composition: Spatiotemporal Modification of Species-Level Traits. Ecosystems, 2020, 23, 1494-1522.	3.4	6
104	Keystone Species. , 2013, , 442-457.		4
105	A keystone ecologist: Robert Treat Paine, 1933–2016. Ecology, 2016, 97, 2905-2909.	3.2	3
106	Biogeography of macrophyte productivity: Effects of oceanic and climatic regimes across spatiotemporal scales. Limnology and Oceanography, 2021, 66, 711-726.	3.1	3
107	Recruitment vs. Postrecruitment Processes as Determinants of Barnacle Population Abundance. Ecological Monographs, 2000, 70, 265.	5.4	3
108	Robert Treat Paine III, 1933-2016. Bulletin of the Ecological Society of America, 2016, 97, 359-363.	0.2	2

1

#	Article	IF	CITATIONS
109	The multifactorial effects of dispersal on biodiversity in environmentally forced metacommunities. Ecosphere, 2018, 9, e02357.	2.2	1

110 North-East Pacific. , 2019, , 237-259.