Jong-Min Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease. Cell, 2015, 162, 516-526.	28.9	514
2	Nrf2, a multiâ€organ protector?. FASEB Journal, 2005, 19, 1061-1066.	0.5	468
3	CAG Repeat Not Polyglutamine Length Determines Timing of Huntington's Disease Onset. Cell, 2019, 178, 887-900.e14.	28.9	301
4	HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Human Molecular Genetics, 2005, 14, 2871-2880.	2.9	274
5	Permanent inactivation of Huntington's disease mutation by personalized allele-specific CRISPR/Cas9. Human Molecular Genetics, 2016, 25, ddw286.	2.9	195
6	The HTT CAG-Expansion Mutation Determines Age at Death but Not Disease Duration in Huntington Disease. American Journal of Human Genetics, 2016, 98, 287-298.	6.2	129
7	Genetic modifiers of Huntington's disease. Movement Disorders, 2014, 29, 1359-1365.	3.9	116
8	A novel approach to investigate tissue-specific trinucleotide repeat instability. BMC Systems Biology, 2010, 4, 29.	3.0	102
9	A modifier of Huntington's disease onset at the MLH1 locus. Human Molecular Genetics, 2017, 26, 3859-3867.	2.9	88
10	Clinical effect of white matter network disruption related to amyloid and small vessel disease. Neurology, 2015, 85, 63-70.	1.1	79
11	Unbiased Gene Expression Analysis Implicates the huntingtin Polyglutamine Tract in Extra-mitochondrial Energy Metabolism. PLoS Genetics, 2007, 3, e135.	3.5	72
12	Msh2 Acts in Medium-Spiny Striatal Neurons as an Enhancer of CAG Instability and Mutant Huntingtin Phenotypes in Huntington's Disease Knock-In Mice. PLoS ONE, 2012, 7, e44273.	2.5	72
13	Quantification of Age-Dependent Somatic CAG Repeat Instability in Hdh CAG Knock-In Mice Reveals Different Expansion Dynamics in Striatum and Liver. PLoS ONE, 2011, 6, e23647.	2.5	62
14	Common SNP-Based Haplotype Analysis of the 4p16.3 Huntington Disease Gene Region. American Journal of Human Genetics, 2012, 90, 434-444.	6.2	60
15	Timing and Impact of Psychiatric, Cognitive, and Motor Abnormalities in Huntington Disease. Neurology, 2021, 96, e2395-e2406.	1.1	53
16	Huntingtin's spherical solenoid structure enables polyglutamine tract-dependent modulation of its structure and function. ELife, 2016, 5, e11184.	6.0	52
17	Huntington's Disease Pathogenesis: Two Sequential Components. Journal of Huntington's Disease, 2021, 10, 35-51.	1.9	49
18	Promotion of somatic CAG repeat expansion by Fan1 knock-out in Huntington's disease knock-in mice is blocked by Mlh1 knock-out. Human Molecular Genetics, 2020, 29, 3044-3053.	2.9	48

Jong-Min Lee

#	Article	IF	CITATIONS
19	Genetic and Functional Analyses Point to FAN1 as the Source of Multiple Huntington Disease Modifier Effects. American Journal of Human Genetics, 2020, 107, 96-110.	6.2	45
20	High resolution time-course mapping of early transcriptomic, molecular and cellular phenotypes in Huntington's disease CAG knock-in mice across multiple genetic backgrounds. Human Molecular Genetics, 2017, 26, 913-922.	2.9	37
21	Exome sequencing of individuals with Huntington's disease implicates FAN1 nuclease activity in slowing CAG expansion and disease onset. Nature Neuroscience, 2022, 25, 446-457.	14.8	31
22	The Genetic Modifiers of Motor OnsetAgeÂ(GeM MOA) Website: Genome-wide Association Analysis for Genetic Modifiers of Huntington's Disease. Journal of Huntington's Disease, 2015, 4, 279-284.	1.9	30
23	Genetic Modification of Huntington Disease Acts Early in the Prediagnosis Phase. American Journal of Human Genetics, 2018, 103, 349-357.	6.2	30
24	Genetic Risk Underlying Psychiatric and Cognitive Symptoms in Huntington's Disease. Biological Psychiatry, 2020, 87, 857-865.	1.3	29
25	Genetic modifiers of Huntington disease differentially influence motor and cognitive domains. American Journal of Human Genetics, 2022, 109, 885-899.	6.2	29
26	Dominant effects of the Huntington's disease HTT CAG repeat length are captured in gene-expression data sets by a continuous analysis mathematical modeling strategy. Human Molecular Genetics, 2013, 22, 3227-3238.	2.9	27
27	HttQ111/+ Huntington's Disease Knock-in Mice Exhibit Brain Region-Specific Morphological Changes and Synaptic Dysfunction. Journal of Huntington's Disease, 2018, 7, 17-33.	1.9	27
28	Population-specific genetic modification of Huntington's disease in Venezuela. PLoS Genetics, 2018, 14, e1007274.	3.5	27
29	Haplotype-based stratification of Huntington's disease. European Journal of Human Genetics, 2017, 25, 1202-1209.	2.8	24
30	Mutations causing Lopes-Maciel-Rodan syndrome are huntingtin hypomorphs. Human Molecular Genetics, 2021, 30, 135-148.	2.9	24
31	Sequence-Level Analysis of the Major European Huntington Disease Haplotype. American Journal of Human Genetics, 2015, 97, 435-444.	6.2	22
32	Genetic Contributors to Intergenerational CAG Repeat Instability in Huntington's Disease Knock-In Mice. Genetics, 2017, 205, 503-516.	2.9	17
33	Novel DNA Aptamers that Bind to Mutant Huntingtin and Modify Its Activity. Molecular Therapy - Nucleic Acids, 2018, 11, 416-428.	5.1	16
34	The prospects of CRISPR-based genome engineering in the treatment of neurodegenerative disorders. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628561774183.	3.5	15
35	Huntington's disease: nearly four decades of human molecular genetics. Human Molecular Genetics, 2021, 30, R254-R263.	2.9	15
36	Novel allele-specific quantification methods reveal no effects of adult onset CAG repeats on HTT mRNA and protein levels. Human Molecular Genetics, 2017, 26, 1258-1267.	2.9	14

Jong-Min Lee

#	Article	IF	CITATIONS
37	Full sequence of mutant huntingtin 3′-untranslated region and modulation of its gene regulatory activity by endogenous microRNA. Journal of Human Genetics, 2019, 64, 995-1004.	2.3	8
38	Prevalence of Huntington's disease gene CAG trinucleotide repeat alleles in patients with bipolar disorder. Bipolar Disorders, 2015, 17, 403-408.	1.9	6
39	Haplotype analysis of the 4p16.3 region in Portuguese families with Huntington's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 135-143.	1.7	6
40	Association Analysis of Chromosome X to Identify Genetic Modifiers of Huntington's Disease. Journal of Huntington's Disease, 2021, 10, 367-375.	1.9	5
41	Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease. Molecular Therapy - Methods and Clinical Development, 2022, 25, 84-95.	4.1	5
42	HD CAGnome: A Search Tool for Huntingtin CAG Repeat Length-Correlated Genes. PLoS ONE, 2014, 9, e95556.	2.5	3
43	Inherited HTT CAG repeat length does not have a major impact on Huntington disease duration. American Journal of Human Genetics, 2022, 109, 1338-1340.	6.2	3
44	C10â€Shared genetic liability between neuropsychiatric disorders and psychiatric symptoms in hd. , 2018, , .		0
45	CO4â€Protein coding tandem repeat in TCERG1 modifies huntington's disease onset. , 2021, , .		0
46	Unbiased gene expression analysis implicates the huntingtin polyglutamine tract in	3.5	0

46 extra-mitochondrial energy metabolism. PLoS Genetics, 2005, preprint, e135.