
Joachim Reidl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/382255/publications.pdf Version: 2024-02-01

IOACHIM REIDI

#	Article	IF	CITATIONS
1	A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nature Communications, 2016, 7, 10515.	12.8	360
2	Vibrio choleraeand cholera: out of the water and into the host. FEMS Microbiology Reviews, 2002, 26, 125-139.	8.6	335
3	Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. International Journal of Medical Microbiology, 2015, 305, 85-95.	3.6	303
4	Characterization of Vibrio cholerae O1 El TorgalU and galE Mutants: Influence on Lipopolysaccharide Structure, Colonization, and Biofilm Formation. Infection and Immunity, 2001, 69, 435-445.	2.2	184
5	Extracellular nucleases and extracellular DNA play important roles in <i>Vibrio cholerae</i> biofilm formation. Molecular Microbiology, 2011, 82, 1015-1037.	2.5	183
6	In Vivo Transduction with Shiga Toxin 1-Encoding Phage. Infection and Immunity, 1998, 66, 4496-4498.	2.2	136
7	Vibrio cholerae Evades Neutrophil Extracellular Traps by the Activity of Two Extracellular Nucleases. PLoS Pathogens, 2013, 9, e1003614.	4.7	111
8	Characterization of Vibrio cholerae bacteriophage K139 and use of a novel mini-transposon to identify a phage-encoded virulence factor. Molecular Microbiology, 1995, 18, 685-701.	2.5	91
9	Intranasal Immunization with Nontypeable Haemophilus influenzae Outer Membrane Vesicles Induces Cross-Protective Immunity in Mice. PLoS ONE, 2012, 7, e42664.	2.5	89
10	Maltose and maltotriose can be formed endogenously in Escherichia coli from glucose and glucose-1-phosphate independently of enzymes of the maltose system. Journal of Bacteriology, 1993, 175, 5655-5665.	2.2	76
11	Outer Membrane Vesiculation Facilitates Surface Exchange and InÂVivo Adaptation of Vibrio cholerae. Cell Host and Microbe, 2020, 27, 225-237.e8.	11.0	73
12	Mall, a novel protein involved in regulation of the maltose system of Escherichia coli, is highly homologous to the repressor proteins GalR, CytR, and Lacl. Journal of Bacteriology, 1989, 171, 4888-4899.	2.2	72
13	NadN and e (P4) Are Essential for Utilization of NAD and Nicotinamide Mononucleotide but Not Nicotinamide Riboside in Haemophilus influenzae. Journal of Bacteriology, 2001, 183, 3974-3981.	2.2	71
14	Lipoprotein e(P4) is essential for hemin uptake by Haemophilus influenzae Journal of Experimental Medicine, 1996, 183, 621-629.	8.5	70
15	Characterization of Vibrio cholerae O1 Antigen as the Bacteriophage K139 Receptor and Identification of IS1004Insertions Aborting O1 Antigen Biosynthesis. Journal of Bacteriology, 2000, 182, 5097-5104.	2.2	60
16	Molecular and Functional Characterization of O Antigen Transfer inVibriocholerae. Journal of Biological Chemistry, 2005, 280, 25936-25947.	3.4	59
17	Lipopolysaccharide Modifications of a Cholera Vaccine Candidate Based on Outer Membrane Vesicles Reduce Endotoxicity and Reveal the Major Protective Antigen. Infection and Immunity, 2013, 81, 2379-2393.	2.2	58
18	A combined vaccine approach against Vibrio cholerae and ETEC based on outer membrane vesicles. Frontiers in Microbiology, 2015, 6, 823.	3.5	58

Joachim Reidl

#	Article	IF	CITATIONS
19	Role of Vibrio cholerae O139 Surface Polysaccharides in Intestinal Colonization. Infection and Immunity, 2002, 70, 5990-5996.	2.2	55
20	NADP and NAD utilization in Haemophilus influenzae. Molecular Microbiology, 2002, 35, 1573-1581.	2.5	53
21	A Novel Regulatory Protein Involved in Motility of <i>Vibrio cholerae</i> . Journal of Bacteriology, 2009, 191, 7027-7038.	2.2	53
22	Immunogenicity of Pasteurella multocida and Mannheimia haemolytica outer membrane vesicles. International Journal of Medical Microbiology, 2013, 303, 247-256.	3.6	52
23	Comparative and Genetic Analyses of the Putative Vibrio cholerae Lipopolysaccharide Core Oligosaccharide Biosynthesis (wav) Gene Cluster. Infection and Immunity, 2002, 70, 2419-2433.	2.2	51
24	A basis for vaccine development: Comparative characterization of Haemophilus influenzae outer membrane vesicles. International Journal of Medical Microbiology, 2015, 305, 298-309.	3.6	50
25	Characterization of the Major Control Region of Vibrio cholerae Bacteriophage K139: Immunity, Exclusion, and Integration. Journal of Bacteriology, 1999, 181, 2902-2913.	2.2	46
26	Vibrio cholerae Phage K139: Complete Genome Sequence and Comparative Genomics of Related Phages. Journal of Bacteriology, 2002, 184, 6592-6601.	2.2	45
27	A Point Mutation in the Sensor Histidine Kinase SaeS of <i>Staphylococcus aureus</i> Strain Newman Alters the Response to Biocide Exposure. Journal of Bacteriology, 2009, 191, 7306-7314.	2.2	40
28	PnuC and the Utilization of the Nicotinamide Riboside Analog 3-Aminopyridine in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 2004, 48, 4532-4541.	3.2	35
29	Outer membrane protein <scp>P</scp> 1 is the <scp>CEACAM</scp> â€binding adhesin of <scp><i>H</i></scp> <i>aemophilus influenzae</i> . Molecular Microbiology, 2015, 98, 440-455.	2.5	35
30	Disulfide Bond Formation and ToxR Activity in Vibrio cholerae. PLoS ONE, 2012, 7, e47756.	2.5	31
31	Identification of genes induced in Vibrio cholerae in a dynamic biofilm system. International Journal of Medical Microbiology, 2014, 304, 749-763.	3.6	29
32	Genetic Rearrangements of the Regions Adjacent to Genes Encoding Heat-Labile Enterotoxins () Tj ETQq0 0 0 rgB ⁻ Microbiology, 2000, 66, 352-358.	T /Overloc 3.1	k 10 Tf 50 2 28
33	Nucleoside uptake in <scp><i>V</i></scp> <i>ibrio cholerae</i> and its role in the transition fitness from host to environment. Molecular Microbiology, 2016, 99, 470-483.	2.5	27
34	Proteolysis of ToxR is controlled by cysteineâ€ŧhiol redox state and bile salts in <i>Vibrio cholerae</i> . Molecular Microbiology, 2018, 110, 796-810.	2.5	27
35	Stringent factor and proteolysis control of sigma factor RpoS expression in Vibrio cholerae. International Journal of Medical Microbiology, 2017, 307, 154-165.	3.6	26
36	Pathogenicity islands and phage conversion: evolutionary aspects of bacterial pathogenesis. International Journal of Medical Microbiology, 2000, 290, 519-527.	3.6	25

Joachim Reidl

#	Article	lF	CITATIONS
37	Porin OmpP2 of Haemophilus influenzae Shows Specificity for Nicotinamide-derived Nucleotide Substrates. Journal of Biological Chemistry, 2003, 278, 24269-24276.	3.4	25
38	Structural and Functional Implications of the Interaction between Macrolide Antibiotics and Bile Acids. Chemistry - A European Journal, 2015, 21, 4350-4358.	3.3	25
39	In vivo repressed genes ofVibrio choleraereveal inverse requirements of an H+/Clâ^'transporter along the gastrointestinal passage. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2376-E2385.	7.1	25
40	NAD + Utilization in Pasteurellaceae : Simplification of a Complex Pathway. Journal of Bacteriology, 2006, 188, 6719-6727.	2.2	24
41	Regulation of the chitobiose–phosphotransferase system in Vibrio cholerae. Archives of Microbiology, 2007, 187, 433-439.	2.2	24
42	Heat-Inducible Surface Stress Protein (Hsp70) Mediates Sulfatide Recognition of the Respiratory Pathogen Haemophilus influenzae. Infection and Immunity, 2001, 69, 3438-3441.	2.2	23
43	Nicotinamide Ribosyl Uptake Mutants in Haemophilus influenzae. Infection and Immunity, 2003, 71, 5398-5401.	2.2	23
44	Aerobic growth deficient Haemophilus influenzae mutants are non-virulent: Implications on metabolism. International Journal of Medical Microbiology, 2003, 293, 145-152.	3.6	22
45	Coupling of NAD + Biosynthesis and Nicotinamide Ribosyl Transport: Characterization of NadR Ribonucleotide Kinase Mutants of Haemophilus influenzae. Journal of Bacteriology, 2005, 187, 4410-4420.	2.2	21
46	Regulated Proteolysis in Vibrio cholerae Allowing Rapid Adaptation to Stress Conditions. Frontiers in Cellular and Infection Microbiology, 2019, 9, 214.	3.9	20
47	In Vivo Transposon Mutagenesis in <i>Haemophilus influenzae</i> . Applied and Environmental Microbiology, 1998, 64, 4697-4702.	3.1	20
48	Characterization of Ferrochelatase (hemH) Mutations in Haemophilus influenzae. Infection and Immunity, 2000, 68, 3007-3009.	2.2	19
49	Characterizing the Hexose-6-Phosphate Transport System of Vibrio cholerae, a Utilization System for Carbon and Phosphate Sources. Journal of Bacteriology, 2013, 195, 1800-1808.	2.2	19
50	Characterization of lactate utilization and its implication on the physiology of Haemophilus influenzae. International Journal of Medical Microbiology, 2014, 304, 490-498.	3.6	18
51	Host stimuli and operator binding sites controlling protein interactions between virulence master regulator ToxR and ToxS in Vibrio cholerae. Molecular Microbiology, 2020, 114, 262-278.	2.5	18
52	Characterizing lipopolysaccharide and core lipid A mutant O1 and O139 strains for adherence properties on mucus-producing cell line HT29-Rev MTX and virulence in mice. International Journal of Medical Microbiology, 2005, 295, 243-251.	3.6	15
53	AAA+ proteases and their role in distinct stages along the Vibrio cholerae lifecycle. International Journal of Medical Microbiology, 2016, 306, 452-462.	3.6	14
54	Characterization of Vibrio cholerae's Extracellular Nuclease Xds. Frontiers in Microbiology, 2019, 10, 2057.	3.5	13

JOACHIM REIDL

#	Article	IF	CITATIONS
55	A Broad Spectrum Protein Glycosylation System Influences Type II Protein Secretion and Associated Phenotypes in Vibrio cholerae. Frontiers in Microbiology, 2019, 10, 2780.	3.5	13
56	Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiology Reviews, 2002, 26, 125-139.	8.6	9
57	Serum resistance and phase variation of a nasopharyngeal non-typeable Haemophilus influenzae isolate. International Journal of Medical Microbiology, 2017, 307, 139-146.	3.6	8
58	Ϊƒ ^E controlled regulation of porin OmpU in <i>Vibrio cholerae</i> . Molecular Microbiology, 2021, 115, 1244-1261.	2.5	7
59	The periplasmic domains of Vibriocholerae ToxR and ToxS are forming a strong heterodimeric complex independent on the redox state of ToxR cysteines. Molecular Microbiology, 2021, 115, 1277-1291.	2.5	7
60	Regulatory interplay of RpoS and RssB controls motility and colonization in Vibrio cholerae. International Journal of Medical Microbiology, 2022, 312, 151555.	3.6	7
61	Glucocorticoids and antibiotics, how do they get together?. EMBO Molecular Medicine, 2015, 7, 992-993.	6.9	5
62	Structural and DNA-binding properties of the cytoplasmic domain of Vibrio cholerae transcription factor ToxR. Journal of Biological Chemistry, 2021, 297, 101167.	3.4	5
63	Outer Membrane Vesicle Biosynthesis in Salmonella : Is There More to Gram-Negative Bacteria?. MBio, 2016, 7, .	4.1	4
64	A suicide plasmid (pJRlacZins) for targeted integration of non-native genes into the chromosome of Escherichia coli. Technical Tips Online, 1997, 2, 171-173.	0.2	3
65	Transposon insertion in a serine-specific minor tRNA coding sequence affects intraperitoneal survival of Haemophilus influenzae in the infant rat model. International Journal of Medical Microbiology, 2010, 300, 218-228.	3.6	2
66	Transposon Tn10. Methods in Molecular Medicine, 2003, 71, 211-24.	0.8	2