
Neil P King

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3821689/publications.pdf Version: 2024-02-01

NEIL P KINC

#	Article	IF	CITATIONS
1	Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell, 2020, 182, 1295-1310.e20.	28.9	1,726
2	Protocol and Reagents for Pseudotyping Lentiviral Particles with SARS-CoV-2 Spike Protein for Neutralization Assays. Viruses, 2020, 12, 513.	3.3	641
3	Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science, 2012, 336, 1171-1174.	12.6	588
4	Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell, 2021, 184, 169-183.e17.	28.9	580
5	Accurate design of co-assembling multi-component protein nanomaterials. Nature, 2014, 510, 103-108.	27.8	504
6	Accurate design of megadalton-scale two-component icosahedral protein complexes. Science, 2016, 353, 389-394.	12.6	466
7	Elicitation of Potent Neutralizing Antibody Responses by Designed Protein Nanoparticle Vaccines for SARS-CoV-2. Cell, 2020, 183, 1367-1382.e17.	28.9	420
8	Design of a hyperstable 60-subunit protein icosahedron. Nature, 2016, 535, 136-139.	27.8	373
9	Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell, 2019, 176, 1420-1431.e17.	28.9	339
10	Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature, 2021, 594, 253-258.	27.8	253
11	Dynamics of Neutralizing Antibody Titers in the Months After Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Journal of Infectious Diseases, 2021, 223, 197-205.	4.0	216
12	Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 2021, 592, 623-628.	27.8	180
13	Evolution of a designed protein assembly encapsulating its own RNA genome. Nature, 2017, 552, 415-420.	27.8	174
14	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	28.9	154
15	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	12.8	149
16	Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines. Cell, 2021, 184, 5432-5447.e16.	28.9	131
17	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	6.0	123
18	Designed proteins induce the formation of nanocage-containing extracellular vesicles. Nature, 2016, 540, 292-295.	27.8	113

Neil P King

#	Article	IF	CITATIONS
19	De novo design of tunable, pH-driven conformational changes. Science, 2019, 364, 658-664.	12.6	109
20	Designed proteins assemble antibodies into modular nanocages. Science, 2021, 372, .	12.6	104
21	A Potent Anti-Malarial Human Monoclonal Antibody Targets Circumsporozoite Protein Minor Repeats and Neutralizes Sporozoites in the Liver. Immunity, 2020, 53, 733-744.e8.	14.3	99
22	Practical approaches to designing novel protein assemblies. Current Opinion in Structural Biology, 2013, 23, 632-638.	5.7	74
23	Engineered SARS-CoV-2 receptor binding domain improves manufacturability in yeast and immunogenicity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	68
24	Serological identification of SARS-CoV-2 infections among children visiting a hospital during the initial Seattle outbreak. Nature Communications, 2020, 11, 4378.	12.8	63
25	Confirmation of intersubunit connectivity and topology of designed protein complexes by native MS. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1268-1273.	7.1	60
26	New Vaccine Design and Delivery Technologies. Journal of Infectious Diseases, 2019, 219, S88-S96.	4.0	53
27	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	4.7	52
28	Limited access to antigen drives generation of early B cell memory while restraining the plasmablast response. Immunity, 2021, 54, 2005-2023.e10.	14.3	46
29	Complete and cooperative in vitro assembly of computationally designed self-assembling protein nanomaterials. Nature Communications, 2021, 12, 883.	12.8	42
30	Targeting HIV Env immunogens to B cell follicles in nonhuman primates through immune complex or protein nanoparticle formulations. Npj Vaccines, 2020, 5, 72.	6.0	39
31	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
32	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
33	Computational design of mechanically coupled axle-rotor protein assemblies. Science, 2022, 376, 383-390.	12.6	33
34	Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering. Protein Science, 2020, 29, 919-929.	7.6	32
35	Stabilization of the SARS-CoV-2 Spike Receptor-Binding Domain Using Deep Mutational Scanning and Structure-Based Design. Frontiers in Immunology, 2021, 12, 710263.	4.8	32
36	Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. Npj Vaccines, 2022, 7, .	6.0	32

NEIL P KING

#	Article	IF	CITATIONS
37	Structure of a designed tetrahedral protein assembly variant engineered to have improved soluble expression. Protein Science, 2015, 24, 1695-1701.	7.6	30
38	Mannose-binding lectin and complement mediate follicular localization and enhanced immunogenicity of diverse protein nanoparticle immunogens. Cell Reports, 2022, 38, 110217.	6.4	29
39	Engineering Self-Assembling Protein Nanoparticles for Therapeutic Delivery. Bioconjugate Chemistry, 2022, 33, 2018-2034.	3.6	28
40	Airway antibodies emerge according to COVID-19 severity and wane rapidly but reappear after SARS-CoV-2 vaccination. JCI Insight, 2021, 6, .	5.0	27
41	Multivalent Display of Antifreeze Proteins by Fusion to Self-Assembling Protein Cages Enhances Ice-Binding Activities. Biochemistry, 2016, 55, 6811-6820.	2.5	25
42	Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell, 2022, 185, 2279-2291.e17.	28.9	25
43	Structure-based design of novel polyhedral protein nanomaterials. Current Opinion in Microbiology, 2021, 61, 51-57.	5.1	24
44	Multimeric antibodies from antigen-specific human IgM+ memory B cells restrict <i>Plasmodium</i> parasites. Journal of Experimental Medicine, 2021, 218, .	8.5	23
45	In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19. Scientific Reports, 2021, 11, 4290.	3.3	22
46	Structure-based design of stabilized recombinant influenza neuraminidase tetramers. Nature Communications, 2022, 13, 1825.	12.8	21
47	Aldehyde Oxidase Contributes to All- <i>Trans</i> -Retinoic Acid Biosynthesis in Human Liver. Drug Metabolism and Disposition, 2021, 49, 202-211.	3.3	13
48	Qualification of ELISA and neutralization methodologies to measure SARS-CoV-2 humoral immunity using human clinical samples. Journal of Immunological Methods, 2021, 499, 113160.	1.4	12
49	Immunization with a self-assembling nanoparticle vaccine displaying EBV gH/gL protects humanized mice against lethal viral challenge. Cell Reports Medicine, 2022, 3, 100658.	6.5	12
50	Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. PLoS Pathogens, 2022, 18, e1010518.	4.7	5
51	Hallmarks of icosahedral virus capsids emerged during laboratory evolution of a bacterial enzyme. Trends in Biochemical Sciences, 2021, 46, 863-865.	7.5	1
52	Title is missing!. , 2020, 16, e1008665.		0
53	Title is missing!. , 2020, 16, e1008665.		0
54	Title is missing!. , 2020, 16, e1008665.		0

4

#	Article	IF	CITATIONS
55	Title is missing!. , 2020, 16, e1008665.		0