
Ela W Knapik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3821190/publications.pdf Version: 2024-02-01

FLA W/ KNADIK

#	Article	IF	CITATIONS
1	Metabolic coessentiality mapping identifies C12orf49 as a regulator of SREBP processing and cholesterol metabolism. Nature Metabolism, 2020, 2, 487-498.	11.9	32
2	Phenome-based approach identifies RIC1-linked Mendelian syndrome through zebrafish models, biobank associations and clinical studies. Nature Medicine, 2020, 26, 98-109.	30.7	32
3	GRIK5 Genetically Regulated Expression Associated with Eye and Vascular Phenomes: Discovery through Iteration among Biobanks, Electronic Health Records, and Zebrafish. American Journal of Human Genetics, 2019, 104, 503-519.	6.2	21
4	Dynamic Glycosylation Governs the Vertebrate COPII Protein Trafficking Pathway. Biochemistry, 2018, 57, 91-107.	2.5	41
5	Zebrafish Developmental Models of Skeletal Diseases. Current Topics in Developmental Biology, 2017, 124, 81-124.	2.2	21
6	Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. ELife, 2017, 6, .	6.0	54
7	A conserved role of αA-crystallin in the development of the zebrafish embryonic lens. Experimental Eye Research, 2015, 138, 104-113.	2.6	24
8	Animal model of Sar1b deficiency presents lipid absorption deficits similar to Anderson disease. Journal of Molecular Medicine, 2015, 93, 165-176.	3.9	44
9	Gremlin 2 Promotes Differentiation of Embryonic Stem Cells to Atrial Fate by Activation of the JNK Signaling Pathway. Stem Cells, 2014, 32, 1774-1788.	3.2	45
10	Trafficking mechanisms of extracellular matrix macromolecules: Insights from vertebrate development and human diseases. International Journal of Biochemistry and Cell Biology, 2014, 47, 57-67.	2.8	55
11	The NADH Oxidase ENOX1, a Critical Mediator of Endothelial Cell Radiosensitization, Is Crucial for Vascular Development. Cancer Research, 2014, 74, 38-43.	0.9	15
12	In vivo cell biology in zebrafish – providing insights into vertebrate development and disease. Journal of Cell Science, 2014, 127, 485-495.	2.0	60
13	The Nuclear Pore Complex Function of Sec13 Protein Is Required for Cell Survival during Retinal Development. Journal of Biological Chemistry, 2014, 289, 11971-11985.	3.4	33
14	Functional modeling in zebrafish demonstrates that the atrial-fibrillation-associated gene <i>GREM2</i> regulates cardiac laterality, cardiomyocyte differentiation and atrial rhythm. DMM Disease Models and Mechanisms, 2013, 6, 332-41.	2.4	42
15	An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Development (Cambridge), 2013, 140, 2923-2932.	2.5	96
16	Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Developmental Biology, 2011, 360, 173-185.	2.0	113
17	Tumor suppressor Lzap regulates cell cycle progression, doming, and zebrafish epiboly. Developmental Dynamics, 2011, 240, 1613-1625.	1.8	26
18	An SNP-Based Linkage Map for Zebrafish Reveals Sex Determination Loci. G3: Genes, Genomes, Genetics, 2011, 1, 3-9.	1.8	145

Ela W Knapik

#	Article	IF	CITATIONS
19	Traffic jams in fish bones. Cell Adhesion and Migration, 2011, 5, 114-118.	2.7	24
20	The <i>feelgood</i> mutation in zebrafish dysregulates COPII-dependent secretion of select extracellular matrix proteins in skeletal morphogenesis. DMM Disease Models and Mechanisms, 2011, 4, 763-776.	2.4	54
21	Mutations in fam20b and xylt1 Reveal That Cartilage Matrix Controls Timing of Endochondral Ossification by Inhibiting Chondrocyte Maturation. PLoS Genetics, 2011, 7, e1002246.	3.5	106
22	Sec24D-Dependent Transport of Extracellular Matrix Proteins Is Required for Zebrafish Skeletal Morphogenesis. PLoS ONE, 2010, 5, e10367.	2.5	110
23	A Selective Glial Barrier at Motor Axon Exit Points Prevents Oligodendrocyte Migration from the Spinal Cord. Journal of Neuroscience, 2009, 29, 15187-15194.	3.6	68
24	Goodpasture Antigen-binding Protein and Its Spliced Variant, Ceramide Transfer Protein, Have Different Functions in the Modulation of Apoptosis during Zebrafish Development. Journal of Biological Chemistry, 2008, 283, 20495-20504.	3.4	26
25	A major zebrafish polymorphism resource for genetic mapping. Genome Biology, 2007, 8, R55.	9.6	35
26	Secretory COPII coat component Sec23a is essential for craniofacial chondrocyte maturation. Nature Genetics, 2006, 38, 1198-1203.	21.4	166
27	Expression of the protein related to Dan and Cerberus gene-prdc-During eye, pharyngeal arch, somite, and swim bladder development in zebrafish. Developmental Dynamics, 2006, 235, 2881-2888.	1.8	26
28	Themother superiormutation ablatesfoxd3activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish. Developmental Dynamics, 2006, 235, 3199-3212.	1.8	101
29	Neural crest survival and differentiation in zebrafish depends on <i>mont blanc/tfap2a</i> gene function. Development (Cambridge), 2004, 131, 1463-1477.	2.5	145
30	Insert-containing neurotrophins in teleost fish and their relationship to nerve growth factor. Molecular and Cellular Neurosciences, 2003, 24, 380-394.	2.2	14
31	Noradrenergic neurons in the zebrafish hindbrain are induced by retinoic acid and requiretfap2afor expression of the neurotransmitter phenotype. Development (Cambridge), 2003, 130, 5741-5754.	2.5	102
32	Sequence analysis of zebrafish chondromodulin-1 and expression profile in the notochord and chondrogenic regions during cartilage morphogenesis. Mechanisms of Development, 2001, 105, 157-162.	1.7	35
33	ENU mutagenesis in zebrafish—from genes to complex diseases. Mammalian Genome, 2000, 11, 511-519.	2.2	71
34	Characterization of a Zebrafish/Mouse Somatic Cell Hybrid Panel. Genomics, 2000, 64, 119-126.	2.9	6
35	Zebrafish Genetic Map with 2000 Microsatellite Markers. Genomics, 1999, 58, 219-232.	2.9	328
36	A microsatellite genetic linkage map for zebrafish (Danio rerio). Nature Genetics, 1998, 18, 338-343.	21.4	333

Ela W Knapik

#	Article	IF	CITATIONS
37	Vertebrate genome evolution and the zebrafish gene map. Nature Genetics, 1998, 18, 345-349.	21.4	792
38	Gene Mapping in Zebrafish Using Single-Strand Conformation Polymorphism Analysis. Genomics, 1998, 51, 216-222.	2.9	23
39	ME1 and GE1: Basic Helix - Loop - Helix Transcription Factors Expressed at High Levels in the Developing Nervous System and in Morphogenetically Active Regions. European Journal of Neuroscience, 1993, 5, 311-318.	2.6	56
40	Zebrafish Erc1b mediates motor innervation and organization of craniofacial muscles in control of jaw movement. Developmental Dynamics, 0, , .	1.8	3