Paul G Ekert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3820963/publications.pdf Version: 2024-02-01

		50276	26613
137	11,961	46	107
papers	citations	h-index	g-index
143	143	143	15814
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Whole-genome sequencing facilitates patient-specific quantitative PCR-based minimal residual disease monitoring in acute lymphoblastic leukaemia, neuroblastoma and Ewing sarcoma. British Journal of Cancer, 2022, 126, 482-491.	6.4	7
2	SFPQ-ABL1 and BCR-ABL1 use different signaling networks to drive B-cell acute lymphoblastic leukemia. Blood Advances, 2022, 6, 2373-2387.	5.2	4
3	JAFFAL: detecting fusion genes with long-read transcriptome sequencing. Genome Biology, 2022, 23, 10.	8.8	20
4	<i>In vitro</i> and <i>in vivo</i> drug screens of tumor cells identify novel therapies for highâ€risk child cancer. EMBO Molecular Medicine, 2022, 14, e14608.	6.9	12
5	Ceramide-induced integrated stress response overcomes Bcl-2 inhibitor resistance in acute myeloid leukemia. Blood, 2022, 139, 3737-3751.	1.4	20
6	ALLSorts: an RNA-Seq subtype classifier for B-cell acute lymphoblastic leukemia. Blood Advances, 2022, 6, 4093-4097.	5.2	25
7	Efficacy of MEK inhibition in a recurrent malignant peripheral nerve sheath tumor. Npj Precision Oncology, 2021, 5, 9.	5.4	19
8	Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nature Communications, 2021, 12, 4270.	12.8	37
9	Chimeric Antigen Receptor T cell Therapy and the Immunosuppressive Tumor Microenvironment in Pediatric Sarcoma. Cancers, 2021, 13, 4704.	3.7	9
10	Diffuse leptomeningeal glioneuronal tumour (DLGNT) in children: the emerging role of genomic analysis. Acta Neuropathologica Communications, 2021, 9, 147.	5.2	11
11	Precision medicine and phosphoproteomics for the identification of novel targeted therapeutic avenues in sarcomas. Biochimica Et Biophysica Acta: Reviews on Cancer, 2021, 1876, 188613.	7.4	8
12	MINTIE: identifying novel structural and splice variants in transcriptomes using RNA-seq data. Genome Biology, 2021, 22, 296.	8.8	16
13	Cycling without brakes lets ALL escape. Blood, 2021, 138, 1912-1913.	1.4	0
14	Enhancing the Potential of Immunotherapy in Paediatric Sarcomas: Breaking the Immunosuppressive Barrier with Receptor Tyrosine Kinase Inhibitors. Biomedicines, 2021, 9, 1798.	3.2	6
15	Slinker: Visualising novel splicing events in RNA-Seq data. F1000Research, 2021, 10, 1255.	1.6	2
16	Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nature Medicine, 2020, 26, 1742-1753.	30.7	185
17	MLL-TFE3: a novel and aggressive KMT2A fusion identified in infant leukemia. Blood Advances, 2020, 4, 4918-4923.	5.2	4
18	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93

#	Article	IF	CITATIONS
19	Recurrent <i>SPECC1L–NTRK</i> fusions in pediatric sarcoma and brain tumors. Journal of Physical Education and Sports Management, 2020, 6, a005710.	1.2	4
20	A Novel Orthotopic Patient-Derived Xenograft Model of Radiation-Induced Glioma Following Medulloblastoma. Cancers, 2020, 12, 2937.	3.7	6
21	Cotargeting BCL-2 and MCL-1 in high-risk B-ALL. Blood Advances, 2020, 4, 2762-2767.	5.2	28
22	The application of RNA sequencing for the diagnosis and genomic classification of pediatric acute lymphoblastic leukemia. Blood Advances, 2020, 4, 930-942.	5.2	52
23	Immune profiling of pediatric solid tumors. Journal of Clinical Investigation, 2020, 130, 3391-3402.	8.2	27
24	Evaluating barriers to uptake of comprehensive genomic profiling (CGP) in advanced cancer patients (pts) Journal of Clinical Oncology, 2020, 38, 2033-2033.	1.6	1
25	Targeted therapy and disease monitoring in CNTRLâ€FGFR1â€driven leukaemia. Pediatric Blood and Cancer, 2019, 66, e27897.	1.5	8
26	Human MLL/KMT2A gene exhibits a second breakpoint cluster region for recurrent MLL–USP2 fusions. Leukemia, 2019, 33, 2306-2340.	7.2	41
27	Abstract 3111: Zero Childhood Cancer: A comprehensive precision medicine platform for children with high-risk cancer. , 2019, , .		1
28	Exploring the feasibility and utility of exomeâ€scale tumour sequencing in a clinical setting. Internal Medicine Journal, 2018, 48, 786-794.	0.8	6
29	MicroRNA-155 expression and function in AML: An evolving paradigm. Experimental Hematology, 2018, 62, 1-6.	0.4	22
30	Enhancing venetoclax activity in acute myeloid leukemia by co-targeting MCL1. Leukemia, 2018, 32, 303-312.	7.2	123
31	Role of the β Common (βc) Family of Cytokines in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028514.	5.5	28
32	Integration of genomics, high throughput drug screening, and personalized xenograft models as a novel precision medicine paradigm for high risk pediatric cancer. Cancer Biology and Therapy, 2018, 19, 1078-1087.	3.4	18
33	Germline HAVCR2 mutations altering TIM-3 characterize subcutaneous panniculitis-like T cell lymphomas with hemophagocytic lymphohistiocytic syndrome. Nature Genetics, 2018, 50, 1650-1657.	21.4	151
34	Clinker: visualizing fusion genes detected in RNA-seq data. GigaScience, 2018, 7, .	6.4	17
35	Brief Report: Potent clinical and radiological response to larotrectinib in TRK fusion-driven high-grade glioma. British Journal of Cancer, 2018, 119, 693-696.	6.4	90
36	Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. Journal of Clinical Investigation, 2018, 128, 3341-3355.	8.2	406

#	Article	IF	CITATIONS
37	Combined BCL-2 and HDAC Targeting Has Potent and TP53 Independent Activity in AML. Blood, 2018, 132, 1426-1426.	1.4	4
38	Abstract LB-138: Zero Childhood Cancer: A comprehensive precision medicine platform for children with high-risk cancer. , 2018, , .		0
39	Abstract LB-137: Integrated genomics: drug screening and personalized xenograft development approach to identify precision treatments for aggressive pediatric brain tumors. , 2018, , .		0
40	Identification of Potent BH3-Mimetic Combinations Targeting Pro-Survival Pathways in Human B-Cell Acute Lymphoblastic Leukemia. Blood, 2018, 132, 567-567.	1.4	0
41	Different Classes of ABL1 Fusions Activate Different Downstream Signalling Nodes. Blood, 2018, 132, 2628-2628.	1.4	0
42	Germline TIM-3 Mutations Characterize Sub-Cutaneous Panniculitis T-Cell Lymphomas with Hemophagocytic Lymphohistiocytic Syndrome. Blood, 2018, 132, 1569-1569.	1.4	0
43	Genetic determinants of anthracycline cardiotoxicity – ready for the clinic?. British Journal of Clinical Pharmacology, 2017, 83, 1141-1142.	2.4	10
44	Chemotherapyâ€related cardiotoxicity: are Australian practitioners missing the point?. Internal Medicine Journal, 2017, 47, 1166-1172.	0.8	6
45	Quantitative proteomic analysis of EZH2 inhibition in acute myeloid leukemia reveals the targets and pathways that precede the induction of cell death. Proteomics - Clinical Applications, 2017, 11, 1700013.	1.6	5
46	Dysregulation of BCL-2 family proteins by leukemia fusion genes. Journal of Biological Chemistry, 2017, 292, 14325-14333.	3.4	26
47	Functionally distinct roles for different miR-155 expression levels through contrasting effects on gene expression, in acute myeloid leukaemia. Leukemia, 2017, 31, 808-820.	7.2	46
48	High CD123 levels enhance proliferation in response to IL-3, but reduce chemotaxis by downregulating CXCR4 expression. Blood Advances, 2017, 1, 1067-1079.	5.2	24
49	Pilot study of a comprehensive precision medicine platform for children with high-risk cancer Journal of Clinical Oncology, 2017, 35, 10539-10539.	1.6	7
50	Letting the breaks off MYCN. Cell Death and Differentiation, 2016, 23, 1904-1905.	11.2	1
51	The caspase-8 inhibitor emricasan combines with the SMAC mimetic birinapant to induce necroptosis and treat acute myeloid leukemia. Science Translational Medicine, 2016, 8, 339ra69.	12.4	140
52	Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics. Cancer Cell, 2016, 29, 145-158.	16.8	93
53	A prospective evaluation of whole-exome sequencing as a first-tier molecular test in infants with suspected monogenic disorders. Genetics in Medicine, 2016, 18, 1090-1096.	2.4	332
54	Autophagy and AML—food for thought. Cell Death and Differentiation, 2016, 23, 5-6.	11.2	9

#	Article	IF	CITATIONS
55	Cycloheximide Can Induce Bax/Bak Dependent Myeloid Cell Death Independently of Multiple BH3-Only Proteins. PLoS ONE, 2016, 11, e0164003.	2.5	8
56	The Dose-Dependent Effects of Microrna-155 in Acute Myeloid Leukemia. Blood, 2016, 128, 2841-2841.	1.4	0
57	The molecular relationships between apoptosis, autophagy and necroptosis. Seminars in Cell and Developmental Biology, 2015, 39, 63-69.	5.0	142
58	The Role of Receptor Interacting Protein Kinase in Myelopoiesis in Health and Disease. Blood, 2015, 126, SCI-29-SCI-29.	1.4	0
59	Loss of Prkar1a leads to Bcl-2 family protein induction and cachexia in mice. Cell Death and Differentiation, 2014, 21, 1815-1824.	11.2	15
60	RIPK1 Regulates RIPK3-MLKL-Driven Systemic Inflammation and Emergency Hematopoiesis. Cell, 2014, 157, 1175-1188.	28.9	492
61	Interleukin-3-mediated regulation of β-catenin in myeloid transformation and acute myeloid leukemia. Journal of Leukocyte Biology, 2014, 96, 83-91.	3.3	13
62	ER stress does not cause upregulation and activation of caspase-2 to initiate apoptosis. Cell Death and Differentiation, 2014, 21, 475-480.	11.2	49
63	Role of p53 in cAMP/PKA pathway mediated apoptosis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1492-1499.	4.9	19
64	Akt1 is the principal Akt isoform regulating apoptosis in limiting cytokine concentrations. Cell Death and Differentiation, 2013, 20, 1341-1349.	11.2	37
65	Seeking a MCL-1 inhibitor. Cell Death and Differentiation, 2013, 20, 1440-1441.	11.2	10
66	Hoxb8 regulates expression of microRNAs to control cell death and differentiation. Cell Death and Differentiation, 2013, 20, 1370-1380.	11.2	30
67	Targeting acute myeloid leukemia by dual inhibition of PI3K signaling and Cdk9-mediated Mcl-1 transcription. Blood, 2013, 122, 738-748.	1.4	53
68	BH3-only protein Noxa contributes to apoptotic control of stress-erythropoiesis. Apoptosis: an International Journal on Programmed Cell Death, 2013, 18, 1306-1318.	4.9	10
69	The oncogenic properties of EWS/WT1 of desmoplastic small round cell tumors are unmasked by loss of p53 in murine embryonic fibroblasts. BMC Cancer, 2013, 13, 585.	2.6	10
70	Exploring the utility of human DNA methylation arrays for profiling mouse genomic DNA. Genomics, 2013, 102, 38-46.	2.9	36
71	Towards an understanding of the biological significance of increased IL-3Rα expression in acute myeloid leukaemia stem cells. Experimental Hematology, 2013, 41, S48.	0.4	0
72	Signalling by the βc family of cytokines. Cytokine and Growth Factor Reviews, 2013, 24, 189-201.	7.2	80

#	Article	IF	CITATIONS
73	<i>In vitro</i> differentiation of nearâ€unlimited numbers of functional mouse basophils using conditional Hoxb8. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 604-613.	5.7	30
74	Protein Kinase Activity of Phosphoinositide 3-Kinase Regulates Cytokine-Dependent Cell Survival. PLoS Biology, 2013, 11, e1001515.	5.6	19
75	HoxA9 regulated Bcl-2 expression mediates survival of myeloid progenitors and the severity of HoxA9-dependent leukemia. Oncotarget, 2013, 4, 1933-1947.	1.8	48
76	Abstract A19: The selective targeting of cell survival pathways in leukemia. , 2013, , .		0
77	Cytokine receptor signaling activates an IKK-dependent phosphorylation of PUMA to prevent cell death. Cell Death and Differentiation, 2012, 19, 633-641.	11.2	27
78	The GM-CSF receptor family: Mechanism of activation and implications for disease. Growth Factors, 2012, 30, 63-75.	1.7	64
79	p53-Dependent Transcriptional Responses to Interleukin-3 Signaling. PLoS ONE, 2012, 7, e31428.	2.5	6
80	Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nature Genetics, 2011, 43, 1012-1017.	21.4	524
81	Crossing paths: interactions between the cell death machinery and growth factor survival signals. Cellular and Molecular Life Sciences, 2010, 67, 1619-1630.	5.4	60
82	Molecular basis of cytokine receptor activation. IUBMB Life, 2010, 62, 509-518.	3.4	70
83	Gene expression analysis reveals HOX gene upregulation in trisomy 8 AML. Leukemia, 2010, 24, 1239-1243.	7.2	12
84	Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes. Cell Death and Differentiation, 2010, 17, 1167-1178.	11.2	150
85	Myeloid progenitor cells lacking p53 exhibit delayed up-regulation of Puma and prolonged survival after cytokine deprivation. Blood, 2010, 115, 344-352.	1.4	29
86	Role for BH3-Only Protein NOXA In Growth-Factor Deprivation and Early Erythropoiesis. Blood, 2010, 116, 4235-4235.	1.4	0
87	Puma indirectly activates Bax to cause apoptosis in the absence of Bid or Bim. Cell Death and Differentiation, 2009, 16, 555-563.	11.2	67
88	The granulocyte-macrophage colony-stimulating factor receptor: linking its structure to cell signaling and its role in disease. Blood, 2009, 114, 1289-1298.	1.4	261
89	Imprinted CDKN1C Is a Tumor Suppressor in Rhabdoid Tumor and Activated by Restoration of SMARCB1 and Histone Deacetylase Inhibitors. PLoS ONE, 2009, 4, e4482.	2.5	57
90	Cytoplasmic p53 is not required for PUMA-induced apoptosis. Cell Death and Differentiation, 2008, 15, 213-215.	11.2	25

Paul G Ekert

#	Article	IF	CITATIONS
91	Triggering of Apoptosis by Puma Is Determined by the Threshold Set by Prosurvival Bcl-2 Family Proteins. Journal of Molecular Biology, 2008, 384, 313-323.	4.2	27
92	Programmed Anuclear Cell Death Delimits Platelet Life Span. Cell, 2007, 128, 1173-1186.	28.9	910
93	The BH3-Only Protein Bid Is Dispensable for DNA Damage- and Replicative Stress-Induced Apoptosis or Cell-Cycle Arrest. Cell, 2007, 129, 423-433.	28.9	189
94	Response: Does Bid Play a Role in the DNA Damage Response?. Cell, 2007, 130, 10-11.	28.9	14
95	Identification of mammalian mitochondrial proteins that interact with IAPs via N-terminal IAP binding motifs. Cell Death and Differentiation, 2007, 14, 348-357.	11.2	83
96	Cell death provoked by loss of interleukin-3 signaling is independent of Bad, Bim, and PI3 kinase, but depends in part on Puma. Blood, 2006, 108, 1461-1468.	1.4	64
97	Two sisters with IMAGe syndrome: Cytomegalic adrenal histopathology, support for autosomal recessive inheritance and literature review. American Journal of Medical Genetics, Part A, 2006, 140A, 1778-1784.	1.2	18
98	Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1. Journal of Cell Science, 2006, 119, 2572-2582.	2.0	23
99	The mitochondrial protein Bak is pivotal for gliotoxin-induced apoptosis and a critical host factor of <i>Aspergillus fumigatus</i> virulence in mice. Journal of Cell Biology, 2006, 174, 509-519.	5.2	98
100	Inhibitor of Apoptosis Proteins and Caspases. , 2006, , 313-334.		0
101	Caspase-2 is resistant to inhibition by inhibitor of apoptosis proteins (IAPs) and can activate caspase-7. FEBS Journal, 2005, 272, 1401-1414.	4.7	32
102	The mitochondrial death squad: hardened killers or innocent bystanders?. Current Opinion in Cell Biology, 2005, 17, 626-630.	5.4	110
103	Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16182-16187.	7.1	133
104	Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. Journal of Lipid Research, 2005, 46, 1182-1195.	4.2	124
105	Stuck long line syndrome. Archives of Disease in Childhood, 2005, 90, 558-558.	1.9	5
106	Spontaneous Liver Hemorrhage During Laparotomy for Necrotizing Enterocolitis: A Potential Role for Recombinant Factor VIIa. Journal of Pediatrics, 2005, 147, 857-859.	1.8	18
107	Bcl-2–regulated apoptosis and cytochrome c release can occur independently of both caspase-2 and caspase-9. Journal of Cell Biology, 2004, 165, 775-780.	5.2	91
108	Unlike Diablo/smac, Grim Promotes Global Ubiquitination and Specific Degradation of X Chromosome-linked Inhibitor of Apoptosis (XIAP) and Neither Cause Apoptosis. Journal of Biological Chemistry, 2004, 279, 4313-4321.	3.4	32

#	Article	IF	CITATIONS
109	Apaf-1 and caspase-9 accelerate apoptosis, but do not determine whether factor-deprived or drug-treated cells die. Journal of Cell Biology, 2004, 165, 835-842.	5.2	169
110	The Caenorhabditis elegans CED-9 protein does not directly inhibit the caspase CED-3, in vitro nor in yeast. Cell Death and Differentiation, 2004, 11, 1309-1316.	11.2	12
111	Caspase-8 levels affect necessity for mitochondrial amplification in death ligand-induced glioma cell apoptosis. Molecular Carcinogenesis, 2004, 39, 173-182.	2.7	14
112	Insights into the pathogenesis of cerebral lesions in incontinentia pigmenti. Pediatric Neurology, 2003, 29, 148-150.	2.1	84
113	HtrA2 Promotes Cell Death through Its Serine Protease Activity and Its Ability to Antagonize Inhibitor of Apoptosis Proteins. Journal of Biological Chemistry, 2002, 277, 445-454.	3.4	484
114	A novel Apaf-1–independent putative caspase-2 activation complex. Journal of Cell Biology, 2002, 159, 739-745.	5.2	151
115	The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3– and caspase 9–interacting sites. Journal of Cell Biology, 2002, 157, 115-124.	5.2	124
116	Caspase-2 is not required for thymocyte or neuronal apoptosis even though cleavage of caspase-2 is dependent on both Apaf-1 and caspase-9. Cell Death and Differentiation, 2002, 9, 832-841.	11.2	170
117	The p35 relative, p49, inhibits mammalian and Drosophila caspases including DRONC and protects against apoptosis. Cell Death and Differentiation, 2002, 9, 1311-1320.	11.2	46
118	Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature, 2002, 419, 634-637.	27.8	517
119	Upper cervical spinal cord injury in neonates: The use of magnetic resonance imaging. Journal of Pediatrics, 2001, 138, 105-108.	1.8	37
120	Analysis of candidate antagonists of IAP-mediated caspase inhibition using yeast reconstituted with the mammalian Apaf-1-activated apoptosis mechanism. Apoptosis: an International Journal on Programmed Cell Death, 2001, 6, 331-338.	4.9	34
121	Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO Journal, 2001, 20, 3114-3123.	7.8	101
122	Till Death Do Us Part. Cell Death and Differentiation, 2001, 8, 662-664.	11.2	1
123	Diablo Promotes Apoptosis by Removing Miha/Xiap from Processed Caspase 9. Journal of Cell Biology, 2001, 152, 483-490.	5.2	188
124	Sequence as well as functional similarity for DIABLO/Smac and Grim, Reaper and Hid?. Cell Death and Differentiation, 2000, 7, 1275-1275.	11.2	44
125	Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins. Cell, 2000, 102, 43-53.	28.9	2,191
126	Nerve Growth Factor Signaling through p75 Induces Apoptosis in Schwann Cells via a Bcl-2-Independent Pathway. Journal of Neuroscience, 1999, 19, 4828-4838.	3.6	117

Paul G Ekert

#	Article	IF	CITATIONS
127	Caspase inhibitors. Cell Death and Differentiation, 1999, 6, 1081-1086.	11.2	415
128	Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors. EMBO Journal, 1999, 18, 330-338.	7.8	75
129	Genes Inhibiting Caspases Rescue Neuronal Cells from Apoptosis and Allow Functional Survival of Cells Exposed to a Death Stimulus. Pediatric Research, 1999, 45, 195A-195A.	2.3	Ο
130	Anti-apoptotic potential of insect cellular and viral IAPs in mammalian cells. Cell Death and Differentiation, 1998, 5, 569-576.	11.2	40
131	Visual Evoked Potentials for Prediction of Neurodevelopmental Outcome in Preterm Infants. Neonatology, 1997, 71, 148-155.	2.0	30
132	Clinicopathological Correlations in Postasphyxial Organ Damage: A Donor Organ Perspective. Pediatrics, 1997, 99, 797-799.	2.1	27
133	Apoptosis and the immune system. British Medical Bulletin, 1997, 53, 591-603.	6.9	75
134	Early Somatosensory Evoked Potentials in Preterm Infants: Their Prognostic Utility. Neonatology, 1997, 71, 83-91.	2.0	12
135	Predicting the outcome of postasphyxial hypoxicischemic encephalopathy within 4 hours of birth. Journal of Pediatrics, 1997, 131, 613-617.	1.8	91
136	8 Apoptosis, haemopoiesis and leukaemogenesis. Best Practice and Research: Clinical Haematology, 1997, 10, 561-576.	1.1	12
137	Dexamethasone prevents apoptosis in a neonatal rat model of hypoxic-ischemic encephalopathy (HIE) by a reactive oxygen species-independent mechanism. Brain Research, 1997, 747, 9-17.	2.2	35