Hai-Long Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3820470/publications.pdf

Version: 2024-02-01

214 50,849 110 219 papers citations h-index g-index

239 239 239 31080 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Functional crystalline porous materials. , 2023, , 336-354.		1
2	Metal–Organic Frameworkâ€Based Electrocatalysts for CO ₂ Reduction. Small Structures, 2022, 3, 2100090.	12.0	90
3	Optimizing MOF electrocatalysis by metal sequence coding. Chem Catalysis, 2022, 2, 3-5.	6.1	7
4	Lightâ€Assisted CO ₂ Hydrogenation over Pd ₃ Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie - International Edition, 2022, 61, .	13.8	89
5	Generation of Hierarchical Pores in Metal–Organic Frameworks by Introducing Rigid Modulator. CCS Chemistry, 2022, 4, 3705-3714.	7.8	16
6	A Sulfurâ€Tolerant MOFâ€Based Singleâ€Atom Fe Catalyst for Efficient Oxidation of NO and Hg ⁰ . Advanced Materials, 2022, 34, e2110123.	21.0	40
7	A General Strategy to Immobilize Singleâ€Atom Catalysts in Metal–Organic Frameworks for Enhanced Photocatalysis. Advanced Materials, 2022, 34, e2109203.	21.0	80
8	Linker engineering in metal–organic frameworks for dark photocatalysis. Chemical Science, 2022, 13, 6696-6703.	7.4	30
9	Charge Separation by Creating Band Bending in Metal–Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2022, 61, e202204108.	13.8	90
10	Charge Separation by Creating Band Bending in Metal–Organic Frameworks for Improved Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2022, 134, .	2.0	11
11	Axial coordination regulation of MOF-based single-atom Ni catalysts by halogen atoms for enhanced CO2 electroreduction. Nano Research, 2022, 15, 10063-10069.	10.4	52
12	Optimizing Pt Electronic States through Formation of a Schottky Junction on Nonâ€reducible Metalâ€"Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie, 2022, 134, .	2.0	6
13	Optimizing Pt Electronic States through Formation of a Schottky Junction on Nonâ€reducible Metal–Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	55
14	Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media. Science Bulletin, 2021, 66, 257-264.	9.0	76
15	Rapid room-temperature synthesis of a porphyrinic MOF for encapsulating metal nanoparticles. Nano Research, 2021, 14, 444-449.	10.4	36
16	Integration of Pd nanoparticles with engineered pore walls in MOFs for enhanced catalysis. CheM, 2021, 7, 686-698.	11.7	146
17	Precise fabrication of single-atom alloy co-catalyst with optimal charge state for enhanced photocatalysis. National Science Review, 2021, 8, nwaa224.	9.5	125
18	Metal–organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. Journal of Materials Chemistry A, 2021, 9, 10562-10611.	10.3	250

#	Article	lF	Citations
19	Encapsulating Copper Nanocrystals into Metal–Organic Frameworks for Cascade Reactions by Photothermal Catalysis. Small, 2021, 17, e2004481.	10.0	52
20	Rational Fabrication of Lowâ€Coordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2021, 60, 7607-7611.	13.8	368
21	Templating Synthesis of Metal–Organic Framework Nanofiber Aerogels and Their Derived Hollow Porous Carbon Nanofibers for Energy Storage and Conversion. Small, 2021, 17, e2004140.	10.0	32
22	Rational Fabrication of Lowâ€Coordinate Singleâ€Atom Ni Electrocatalysts by MOFs for Highly Selective CO ₂ Reduction. Angewandte Chemie, 2021, 133, 7685-7689.	2.0	39
23	Microenvironment Modulation in Metal–Organic Framework-Based Catalysis. Accounts of Materials Research, 2021, 2, 327-339.	11.7	171
24	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie, 2021, 133, 14243-14249.	2.0	4
25	Largeâ€Area Crystalline Zeolitic Imidazolate Framework Thin Films. Angewandte Chemie - International Edition, 2021, 60, 14124-14130.	13.8	30
26	Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2021, 60, 16372-16376.	13.8	163
27	Interfacial Microenvironment Modulation Boosting Electron Transfer between Metal Nanoparticles and MOFs for Enhanced Photocatalysis. Angewandte Chemie, 2021, 133, 16508-16512.	2.0	20
28	Modulating Coordination Environment of Single-Atom Catalysts and Their Proximity to Photosensitive Units for Boosting MOF Photocatalysis. Journal of the American Chemical Society, 2021, 143, 12220-12229.	13.7	219
29	Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter, 2021, 4, 2230-2265.	10.0	158
30	Metal–Organic Framework-Based Hierarchically Porous Materials: Synthesis and Applications. Chemical Reviews, 2021, 121, 12278-12326.	47.7	633
31	Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nature Catalysis, 2021, 4, 719-729.	34.4	406
32	Large-Scale Production of Hierarchically Porous Metal–Organic Frameworks by a Reflux-Assisted Post-Synthetic Ligand Substitution Strategy. ACS Central Science, 2021, 7, 1434-1440.	11.3	50
33	Improving Water Stability of Metal–Organic Frameworks by a General Surface Hydrophobic Polymerization. CCS Chemistry, 2021, 3, 2740-2748.	7.8	72
34	Piezoâ€Photocatalysis over Metal–Organic Frameworks: Promoting Photocatalytic Activity by Piezoelectric Effect. Advanced Materials, 2021, 33, e2106308.	21.0	154
35	Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO ₂ Electroreduction. Journal of the American Chemical Society, 2021, 143, 19417-19424.	13.7	305
36	Encapsulating soluble active species into hollow crystalline porous capsules beyond integration of homogeneous and heterogeneous catalysis. National Science Review, 2020, 7, 37-45.	9.5	106

#	Article	IF	CITATIONS
37	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 2705-2709.	13.8	404
38	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie, 2020, 132, 2727-2731.	2.0	110
39	Photocatalytic Molecular Oxygen Activation by Regulating Excitonic Effects in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 20763-20771.	13.7	321
40	Singleâ€Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO ₂ at Low Pressures. Angewandte Chemie - International Edition, 2020, 59, 20589-20595.	13.8	247
41	Metal–Organic Frameworks: Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy (Adv. Mater. 30/2020). Advanced Materials, 2020, 32, 2070225.	21.0	24
42	Singleâ€Atom Electrocatalysts from Multivariate Metal–Organic Frameworks for Highly Selective Reduction of CO ₂ at Low Pressures. Angewandte Chemie, 2020, 132, 20770-20776.	2.0	37
43	Incorporating Transitionâ€Metal Phosphides Into Metalâ€Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie, 2020, 132, 22937-22943.	2.0	34
44	Regulating Photocatalysis by Spin-State Manipulation of Cobalt in Covalent Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 16723-16731.	13.7	333
45	Incorporating Transitionâ€Metal Phosphides Into Metalâ€Organic Frameworks for Enhanced Photocatalysis. Angewandte Chemie - International Edition, 2020, 59, 22749-22755.	13.8	166
46	Nano-sized metal-organic frameworks: Synthesis and applications. Coordination Chemistry Reviews, 2020, 417, 213366.	18.8	174
47	Accelerating Chemo- and Regioselective Hydrogenation of Alkynes over Bimetallic Nanoparticles in a Metal–Organic Framework. ACS Catalysis, 2020, 10, 7753-7762.	11.2	80
48	Nanocasting SiO2 into metal–organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nature Communications, 2020, 11, 2831.	12.8	321
49	Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy. Advanced Materials, 2020, 32, e2000041.	21.0	151
50	Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordination Chemistry Reviews, 2020, 412, 213262.	18.8	401
51	A unique coordination-driven route for the precise nanoassembly of metal sulfides on metal–organic frameworks. Nanoscale Horizons, 2020, 5, 714-719.	8.0	33
52	Microwave-Assisted Synthesis and Photocatalytic Performance of a Soluble Porphyrinic MOF. Acta Chimica Sinica, 2020, 78, 688.	1.4	18
53	Location determination of metal nanoparticles relative to a metal-organic framework. Nature Communications, 2019, 10, 3462.	12.8	99
54	Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie, 2019, 131, 12303-12307.	2.0	55

#	Article	IF	CITATIONS
55	Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. EnergyChem, 2019, 1, 100005.	19.1	289
56	Switching on the Photocatalysis of Metal–Organic Frameworks by Engineering Structural Defects. Angewandte Chemie - International Edition, 2019, 58, 12175-12179.	13.8	310
57	Solar-Powered Artificial Photosynthesis Coupled with Organic Synthesis. CheM, 2019, 5, 2508-2510.	11.7	26
58	Turning on Visible-Light Photocatalytic Câ^'H Oxidation over Metalâ€"Organic Frameworks by Introducing Metal-to-Cluster Charge Transfer. Journal of the American Chemical Society, 2019, 141, 19110-19117.	13.7	308
59	Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. CheM, 2019, 5, 786-804.	11.7	555
60	Boosting Electrocatalytic Hydrogen Evolution over Metal–Organic Frameworks by Plasmonâ€Induced Hotâ€Electron Injection. Angewandte Chemie, 2019, 131, 10823-10827.	2.0	22
61	Boosting Electrocatalytic Hydrogen Evolution over Metal–Organic Frameworks by Plasmonâ€Induced Hotâ€Electron Injection. Angewandte Chemie - International Edition, 2019, 58, 10713-10717.	13.8	129
62	Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chemical Society Reviews, 2019, 48, 2783-2828.	38.1	1,685
63	Single-atom catalysts templated by metal–organic frameworks for electrochemical nitrogen reduction. Journal of Materials Chemistry A, 2019, 7, 26371-26377.	10.3	152
64	Improving MOF stability: approaches and applications. Chemical Science, 2019, 10, 10209-10230.	7.4	855
65	A molecular-templating strategy to polyamine-incorporated porous organic polymers for unprecedented CO2 capture and separation. Science China Materials, 2019, 62, 448-454.	6.3	13
66	Metal–Organicâ€Frameworkâ€Derived Hollow Nâ€Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angewandte Chemie - International Edition, 2019, 58, 3511-3515.	13.8	474
67	Metal–Organicâ€Frameworkâ€Derived Hollow Nâ€Doped Porous Carbon with Ultrahigh Concentrations of Single Zn Atoms for Efficient Carbon Dioxide Conversion. Angewandte Chemie, 2019, 131, 3549-3553.	2.0	84
68	Metal–Organic Frameworks for Photocatalysis and Photothermal Catalysis. Accounts of Chemical Research, 2019, 52, 356-366.	15.6	880
69	Metal–organic frameworks: Structures and functional applications. Materials Today, 2019, 27, 43-68.	14.2	627
70	Direct evidence of charge separation in a metal–organic framework: efficient and selective photocatalytic oxidative coupling of amines <i>via</i> charge and energy transfer. Chemical Science, 2018, 9, 3152-3158.	7.4	232
71	Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF Composites. Angewandte Chemie - International Edition, 2018, 57, 5379-5383.	13.8	430
72	Incorporation of Imidazolium-Based Poly(ionic liquid)s into a Metal–Organic Framework for CO ₂ Capture and Conversion. ACS Catalysis, 2018, 8, 3194-3201.	11.2	379

#	Article	lF	CITATIONS
73	Metal–organic framework-derived porous materials for catalysis. Coordination Chemistry Reviews, 2018, 362, 1-23.	18.8	737
74	Incorporation of In ₂ S ₃ Nanoparticles into a Metalâ€"Organic Framework for Ultrafast Removal of Hg from Water. Inorganic Chemistry, 2018, 57, 4891-4897.	4.0	67
75	Boosting Photocatalytic Hydrogen Production of Porphyrinic MOFs: The Metal Location in Metalloporphyrin Matters. ACS Catalysis, 2018, 8, 4583-4590.	11.2	184
76	Facile synthesis of graphene-supported Ni-CeOx nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Research, 2018, 11, 4412-4422.	10.4	129
77	Light-enhanced acid catalysis over a metal–organic framework. Chemical Communications, 2018, 54, 2498-2501.	4.1	21
78	A noble-metal-free nanocatalyst for highly efficient and complete hydrogen evolution from N ₂ H ₄ BH ₃ . Journal of Materials Chemistry A, 2018, 6, 4386-4393.	10.3	73
79	Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Advanced Materials, 2018, 30, 1705112.	21.0	599
80	RÃ⅓cktitelbild: Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visible‣ight Photocatalysis (Angew.) Tj ETQq0 0 0	rg2B0T/Ov€	erlock 10 Tf 5
81	Photocatalytic Hydrogen Production Coupled with Selective Benzylamine Oxidation over MOF Composites. Angewandte Chemie, 2018, 130, 5477-5481.	2.0	103
82	Encapsulating surface-clean metal nanoparticles inside metal–organic frameworks for enhanced catalysis using a novel γ-ray radiation approach. Inorganic Chemistry Frontiers, 2018, 5, 29-38.	6.0	15
83	Metal–Organic Frameworks as Platforms for Catalytic Applications. Advanced Materials, 2018, 30, e1703663.	21.0	1,210
84	[Ti ₈ Zr ₂ O ₁₂ (COO) ₁₆] Cluster: An Ideal Inorganic Building Unit for Photoactive Metal–Organic Frameworks. ACS Central Science, 2018, 4, 105-111.	11.3	204
85	Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visibleâ€Light Photocatalysis. Angewandte Chemie, 2018, 130, 1115-1119.	2.0	41
86	Integration of Plasmonic Effects and Schottky Junctions into Metal–Organic Framework Composites: Steering Charge Flow for Enhanced Visibleâ€Light Photocatalysis. Angewandte Chemie - International Edition, 2018, 57, 1103-1107.	13.8	429
87	Location effect in a photocatalytic hybrid system of metal-organic framework interfaced with semiconductor nanoparticles. Chinese Journal of Chemical Physics, 2018, 31, 613-618.	1.3	12
88	Oxidation or Reduction State of Au Stabilized by an MOF: Active Site Identification for the Threeâ€Component Coupling Reaction. Small Methods, 2018, 2, 1800216.	8.6	24
89	Unveiling Charge-Separation Dynamics in CdS/Metal–Organic Framework Composites for Enhanced Photocatalysis. ACS Catalysis, 2018, 8, 11615-11621.	11.2	262
90	From UV to Nearâ€Infrared Lightâ€Responsive Metal–Organic Framework Composites: Plasmon and Upconversion Enhanced Photocatalysis. Advanced Materials, 2018, 30, e1707377.	21.0	200

#	Article	IF	CITATIONS
91	From Metal–Organic Frameworks to Singleâ€Atom Fe Implanted Nâ€doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Angewandte Chemie - International Edition, 2018, 57, 8525-8529.	13.8	669
92	From Metal–Organic Frameworks to Singleâ€Atom Fe Implanted Nâ€doped Porous Carbons: Efficient Oxygen Reduction in Both Alkaline and Acidic Media. Angewandte Chemie, 2018, 130, 8661-8665.	2.0	104
93	Sodiumâ€Doped C ₃ N ₄ /MOF Heterojunction Composites with Tunable Band Structures for Photocatalysis: Interplay between Light Harvesting and Electron Transfer. Chemistry - A European Journal, 2018, 24, 18403-18407.	3.3	85
94	Metal-organic frameworks for photocatalysis. Scientia Sinica Chimica, 2018, 48, 1058-1075.	0.4	20
95	Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology. Ultrasonics Sonochemistry, 2017, 34, 325-331.	8.2	69
96	Singlet Oxygen-Engaged Selective Photo-Oxidation over Pt Nanocrystals/Porphyrinic MOF: The Roles of Photothermal Effect and Pt Electronic State. Journal of the American Chemical Society, 2017, 139, 2035-2044.	13.7	616
97	Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chemical Society Reviews, 2017, 46, 4774-4808.	38.1	1,519
98	Metal–Organic Frameworks for Heterogeneous Basic Catalysis. Chemical Reviews, 2017, 117, 8129-8176.	47.7	1,230
99	Thermally Stable Metal-Organic Framework-Templated Synthesis of Hierarchically Porous Metal Sulfides: Enhanced Photocatalytic Hydrogen Production. Small, 2017, 13, 1700632.	10.0	73
100	Template-Directed Growth of Well-Aligned MOF Arrays and Derived Self-Supporting Electrodes for Water Splitting. CheM, 2017, 2, 791-802.	11.7	407
101	Unprecedented Li ⁺ Exchange in an Anionic Metal–Organic Framework: Significantly Enhanced Gas Uptake Capacity. Inorganic Chemistry, 2017, 56, 4263-4266.	4.0	34
102	Metal–Organic Frameworkâ€Templated Catalyst: Synergy in Multiple Sites for Catalytic CO ₂ Fixation. ChemSusChem, 2017, 10, 1898-1903.	6.8	91
103	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie - International Edition, 2017, 56, 563-567.	13.8	486
104	A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability. Angewandte Chemie, 2017, 129, 578-582.	2.0	96
105	Innentitelbild: A Modulatorâ€Induced Defectâ€Formation Strategy to Hierarchically Porous Metal–Organic Frameworks with High Stability (Angew. Chem. 2/2017). Angewandte Chemie, 2017, 129, 432-432.	2.0	0
106	Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nature Communications, 2017, 8, 1233.	12.8	286
107	From covalent triazine-based frameworks to N-doped porous carbon/reduced graphene oxide nanosheets: efficient electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2017, 5, 23170-23178.	10.3	60
108	Metal–Organic Frameworks and Their Composites: Synthesis and Electrochemical Applications. Small Methods, 2017, 1, 1700187.	8.6	163

#	Article	IF	Citations
109	Low-cost CuNi@MIL-101 as an excellent catalyst toward cascade reaction: integration of ammonia borane dehydrogenation with nitroarene hydrogenation. Chemical Communications, 2017, 53, 12361-12364.	4.1	92
110	Metal–Organic Frameworkâ€Derived FeCoâ€Nâ€Doped Hollow Porous Carbon Nanocubes for Electrocatalysis in Acidic and Alkaline Media. ChemSusChem, 2017, 10, 3019-3024.	6.8	96
111	Boosting selective oxidation of cyclohexane over a metal–organic framework by hydrophobicity engineering of pore walls. Chemical Communications, 2017, 53, 10026-10029.	4.1	71
112	Porphyrinic Metal–Organic Framework-Templated Fe–Ni–P/Reduced Graphene Oxide for Efficient Electrocatalytic Oxygen Evolution. ACS Applied Materials & Diterfaces, 2017, 9, 23852-23858.	8.0	115
113	Controlled Intercalation and Chemical Exfoliation of Layered Metal–Organic Frameworks Using a Chemically Labile Intercalating Agent. Journal of the American Chemical Society, 2017, 139, 9136-9139.	13.7	369
114	Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie, 2016, 128, 9535-9539.	2.0	122
115	Pd Nanocubes@ZIFâ€8: Integration of Plasmonâ€Driven Photothermal Conversion with a Metal–Organic Framework for Efficient and Selective Catalysis. Angewandte Chemie - International Edition, 2016, 55, 3685-3689.	13.8	426
116	Encapsulating a Co(II) Molecular Photocatalyst in Metal–Organic Framework for Visible-Light-Driven H ₂ Production: Boosting Catalytic Efficiency via Spatial Charge Separation. ACS Catalysis, 2016, 6, 5359-5365.	11.2	184
117	Boosting Photocatalytic Hydrogen Production of a Metal–Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. Angewandte Chemie - International Edition, 2016, 55, 9389-9393.	13.8	513
118	Metal–Organic Frameworkâ€Templated Porous Carbon for Highly Efficient Catalysis: The Critical Role of Pyrrolic Nitrogen Species. Chemistry - A European Journal, 2016, 22, 3470-3477.	3.3	79
119	Rücktitelbild: Pd Nanocubes@ZIFâ€8: Integration of Plasmonâ€Driven Photothermal Conversion with a Metal–Organic Framework for Efficient and Selective Catalysis (Angew. Chem. 11/2016). Angewandte Chemie, 2016, 128, 3894-3894.	2.0	3
120	Stretchable Electronics: A Stretchable Electronic Fabric Artificial Skin with Pressureâ€, Lateral Strainâ€, and Flexionâ€Sensitive Properties (Adv. Mater. 4/2016). Advanced Materials, 2016, 28, 783-783.	21.0	9
121	A MOF-derived Co–CoO@N-doped porous carbon for efficient tandem catalysis: dehydrogenation of ammonia borane and hydrogenation of nitro compounds. Chemical Communications, 2016, 52, 7719-7722.	4.1	172
122	Porphyrinic Metal–Organic Framework Catalyzed Heck-Reaction: Fluorescence "Turn-On―Sensing of Cu(II) Ion. Chemistry of Materials, 2016, 28, 6698-6704.	6.7	161
123	One-step assembly of a hierarchically porous phenolic resin-type polymer with high stability for CO ₂ capture and conversion. Chemical Communications, 2016, 52, 12294-12297.	4.1	50
124	In situ large-scale construction of sulfur-functionalized metal–organic framework and its efficient removal of Hg(<scp>ii</scp>) from water. Journal of Materials Chemistry A, 2016, 4, 15370-15374.	10.3	135
125	A Stretchable Electronic Fabric Artificial Skin with Pressureâ€, Lateral Strainâ€, and Flexionâ€Sensitive Properties. Advanced Materials, 2016, 28, 722-728.	21.0	400
126	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie, 2016, 128, 7505-7509.	2.0	72

#	Article	IF	Citations
127	Chemical Sensors Based on Metal–Organic Frameworks. ChemPlusChem, 2016, 81, 675-690.	2.8	552
128	Pd Nanocubes@ZIFâ€8: Integration of Plasmonâ€Driven Photothermal Conversion with a Metal–Organic Framework for Efficient and Selective Catalysis. Angewandte Chemie, 2016, 128, 3749-3753.	2.0	124
129	Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Angewandte Chemie - International Edition, 2016, 55, 7379-7383.	13.8	260
130	Rational synthesis of an exceptionally stable Zn(<scp>ii</scp>) metal–organic framework for the highly selective and sensitive detection of picric acid. Chemical Communications, 2016, 52, 5734-5737.	4.1	253
131	Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Materials, 2016, 8, e253-e253.	7.9	114
132	Seed-Mediated Synthesis of Metal–Organic Frameworks. Journal of the American Chemical Society, 2016, 138, 5316-5320.	13.7	104
133	A metal–organic framework-templated synthesis of γ-Fe⟨sub⟩2⟨/sub⟩O⟨sub⟩3⟨/sub⟩ nanoparticles encapsulated in porous carbon for efficient and chemoselective hydrogenation of nitro compounds. Chemical Communications, 2016, 52, 4199-4202.	4.1	137
134	Exceptionally Robust In-Based Metal–Organic Framework for Highly Efficient Carbon Dioxide Capture and Conversion. Inorganic Chemistry, 2016, 55, 3558-3565.	4.0	199
135	Metal–organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chemical Science, 2016, 7, 1690-1695.	7.4	745
136	Palladium nanoparticles stabilized with N-doped porous carbons derived from metal–organic frameworks for selective catalysis in biofuel upgrade: the role of catalyst wettability. Green Chemistry, 2016, 18, 1212-1217.	9.0	148
137	Metal-Organic Frameworks for Catalysis. Acta Chimica Sinica, 2016, 74, 113.	1.4	61
138	Metalâ€Organic Frameworks: From Bimetallic Metalâ€Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis (Adv. Mater. 34/2015). Advanced Materials, 2015, 27, 5009-5009.	21.0	21
139	Porous Molybdenumâ€Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 12928-12932.	13.8	368
140	Hollow Zn/Co ZIF Particles Derived from Core–Shell ZIFâ€67@ZIFâ€8 as Selective Catalyst for the Semiâ€Hydrogenation of Acetylene. Angewandte Chemie - International Edition, 2015, 54, 10889-10893.	13.8	619
141	From Bimetallic Metalâ€Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Advanced Materials, 2015, 27, 5010-5016.	21.0	1,224
142	New eudesmane-type sesquiterpenoids from the root bark of Pseudolarix kaempferi. Journal of Asian Natural Products Research, 2015, 17, 1180-1187.	1.4	2
143	Metal-Organic Frameworks: Tiny Pd@Co Core-Shell Nanoparticles Confined inside a Metal-Organic Framework for Highly Efficient Catalysis (Small 1/2015). Small, 2015, 11, 70-70.	10.0	2
144	Polar Group and Defect Engineering in a Metal–Organic Framework: Synergistic Promotion of Carbon Dioxide Sorption and Conversion. ChemSusChem, 2015, 8, 878-885.	6.8	193

#	Article	IF	CITATIONS
145	Linearly bridging CO2 in a metal–organic framework. Chemical Communications, 2015, 51, 8446-8449.	4.1	9
146	Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis. ACS Catalysis, 2015, 5, 2062-2069.	11.2	363
147	One-pot tandem catalysis over Pd@MIL-101: boosting the efficiency of nitro compound hydrogenation by coupling with ammonia borane dehydrogenation. Chemical Communications, 2015, 51, 10419-10422.	4.1	157
148	A new highly oxygenated daphnane diterpene esters from the flower buds of <i>Daphne genkwa </i> Natural Product Research, 2015, 29, 1878-1883.	1.8	15
149	Precisely Controlled Porous Alumina Overcoating on Pd Catalyst by Atomic Layer Deposition: Enhanced Selectivity and Durability in Hydrogenation of 1,3-Butadiene. ACS Catalysis, 2015, 5, 2735-2739.	11.2	79
150	Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters. Chemical Communications, 2015, 51, 8292-8295.	4.1	191
151	A seed-mediated approach to the general and mild synthesis of non-noble metal nanoparticles stabilized by a metal–organic framework for highly efficient catalysis. Materials Horizons, 2015, 2, 606-612.	12.2	42
152	Visible-Light Photoreduction of CO ₂ in a Metal–Organic Framework: Boosting Electron–Hole Separation via Electron Trap States. Journal of the American Chemical Society, 2015, 137, 13440-13443.	13.7	927
153	Diverse Terpenoids from the Leaves of Clerodendrum trichotomum. Chemistry of Natural Compounds, 2015, 51, 999-1000.	0.8	2
154	Tiny Pd@Co Core–Shell Nanoparticles Confined inside a Metal–Organic Framework for Highly Efficient Catalysis. Small, 2015, 11, 71-76.	10.0	215
155	Water-stable metal–organic frameworks with intrinsic peroxidase-like catalytic activity as a colorimetric biosensing platform. Chemical Communications, 2014, 50, 1092-1094.	4.1	339
156	A Facile and General Coating Approach to Moisture/Water-Resistant Metal–Organic Frameworks with Intact Porosity. Journal of the American Chemical Society, 2014, 136, 16978-16981.	13.7	445
157	Metal–Organic Frameworks: Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions (Adv. Mater. 28/2014). Advanced Materials, 2014, 26, 4907-4907.	21.0	3
158	Alkylamineâ€Tethered Stable Metal–Organic Framework for CO ₂ Capture from Flue Gas. ChemSusChem, 2014, 7, 734-737.	6.8	131
159	Solid-state structural transformation doubly triggered by reaction temperature and time in 3D metal-organic frameworks: great enhancement of stability and gas adsorption. Chemical Science, 2014, 5, 1368.	7.4	62
160	MILâ€101â€5O ₃ H: A Highly Efficient Brønsted Acid Catalyst for Heterogeneous Alcoholysis of Epoxides under Ambient Conditions. Chemistry - A European Journal, 2014, 20, 14976-14980.	3.3	150
161	Hollow Metal–Organic Framework Nanospheres via Emulsion-Based Interfacial Synthesis and Their Application in Size-Selective Catalysis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 18163-18171.	8.0	159
162	Metal–organic frameworks with improved moisture stability based on a phosphonate monoester: effect of auxiliary N-donor ligands on framework dimensionality. CrystEngComm, 2014, 16, 6635-6644.	2.6	37

#	Article	IF	Citations
163	An amine-functionalized metal–organic framework as a sensing platform for DNA detection. Chemical Communications, 2014, 50, 12069-12072.	4.1	178
164	Integration of an Inorganic Semiconductor with a Metal–Organic Framework: A Platform for Enhanced Gaseous Photocatalytic Reactions. Advanced Materials, 2014, 26, 4783-4788.	21.0	380
165	Nanowire-Directed Templating Synthesis of Metal–Organic Framework Nanofibers and Their Derived Porous Doped Carbon Nanofibers for Enhanced Electrocatalysis. Journal of the American Chemical Society, 2014, 136, 14385-14388.	13.7	584
166	An Exceptionally Stable, Porphyrinic Zr Metal–Organic Framework Exhibiting pH-Dependent Fluorescence. Journal of the American Chemical Society, 2013, 135, 13934-13938.	13.7	646
167	Metal–Organic Frameworks Based on Previously Unknown Zr ₈ /Hf ₈ Cubic Clusters. Inorganic Chemistry, 2013, 52, 12661-12667.	4.0	197
168	Construction of Ultrastable Porphyrin Zr Metal–Organic Frameworks through Linker Elimination. Journal of the American Chemical Society, 2013, 135, 17105-17110.	13.7	880
169	A Route to Metal–Organic Frameworks through Framework Templating. Inorganic Chemistry, 2013, 52, 1164-1166.	4.0	83
170	Interpenetration control in metal–organic frameworks for functional applications. Coordination Chemistry Reviews, 2013, 257, 2232-2249.	18.8	478
171	Nanoporous Metal–Organic Frameworks. , 2013, , 71-98.		1
172	Synergistic catalysis of Au-Co@SiO2 nanospheres in hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage. Journal of Materials Chemistry, 2012, 22, 5065.	6.7	82
173	Pore Surface Engineering with Controlled Loadings of Functional Groups via Click Chemistry in Highly Stable Metal–Organic Frameworks. Journal of the American Chemical Society, 2012, 134, 14690-14693.	13.7	351
174	Titelbild: Zirconium-Metalloporphyrin PCN-222: Mesoporous Metal-Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts (Angew. Chem. 41/2012). Angewandte Chemie, 2012, 124, 10343-10343.	2.0	3
175	Zirconiumâ€Metalloporphyrin PCNâ€222: Mesoporous Metal–Organic Frameworks with Ultrahigh Stability as Biomimetic Catalysts. Angewandte Chemie - International Edition, 2012, 51, 10307-10310.	13.8	1,555
176	Syntheses, crystal structures and properties of new lead(ii) or bismuth(iii) selenites and tellurite. Dalton Transactions, 2012, 41, 9532.	3.3	36
177	Solvent-Induced Controllable Synthesis, Single-Crystal to Single-Crystal Transformation and Encapsulation of Alq3 for Modulated Luminescence in (4,8)-Connected Metal–Organic Frameworks. Inorganic Chemistry, 2012, 51, 7484-7491.	4.0	127
178	Tailorâ€Made Metal–Organic Frameworks from Functionalized Molecular Building Blocks and Lengthâ€Adjustable Organic Linkers by Stepwise Synthesis. Chemistry - A European Journal, 2012, 18, 8076-8083.	3.3	69
179	A one-pot protocol for synthesis of non-noble metal-based core–shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3. Chemical Communications, 2011, 47, 10999.	4.1	107
180	Synergistic Catalysis of Au@Ag Coreâ^'Shell Nanoparticles Stabilized on Metalâ^'Organic Framework. Journal of the American Chemical Society, 2011, 133, 1304-1306.	13.7	858

#	Article	IF	CITATIONS
181	Synergistic Catalysis of Metal–Organic Framework-Immobilized Au–Pd Nanoparticles in Dehydrogenation of Formic Acid for Chemical Hydrogen Storage. Journal of the American Chemical Society, 2011, 133, 11822-11825.	13.7	725
182	Porous metal–organic frameworks as platforms for functional applications. Chemical Communications, 2011, 47, 3351.	4.1	798
183	Recent progress in synergistic catalysis over heterometallic nanoparticles. Journal of Materials Chemistry, 2011, 21, 13705.	6.7	395
184	From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society, 2011, 133, 11854-11857.	13.7	1,071
185	One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Research, 2011, 4, 1233-1241.	10.4	77
186	Mesoporous Metalâ€Organic Frameworks with Sizeâ€tunable Cages: Selective CO ₂ Uptake, Encapsulation of Ln ³⁺ Cations for Luminescence, and Columnâ€Chromatographic Dye Separation. Advanced Materials, 2011, 23, 5015-5020.	21.0	321
187	Ultrafine Gold Clusters Incorporated into a Metal–Organic Framework. Chemistry - A European Journal, 2011, 17, 78-81.	3.3	97
188	Catalytic hydrolysis of ammonia borane for chemical hydrogen storage. Catalysis Today, 2011, 170, 56-63.	4.4	295
189	Non-, Micro-, and Mesoporous Metalâ ^a Organic Framework Isomers: Reversible Transformation, Fluorescence Sensing, and Large Molecule Separation. Journal of the American Chemical Society, 2010, 132, 5586-5587.	13.7	588
190	Liquidâ€Phase Chemical Hydrogen Storage: Catalytic Hydrogen Generation under Ambient Conditions. ChemSusChem, 2010, 3, 541-549.	6.8	396
191	Bimetallic Au–Ni Nanoparticles Embedded in SiO ₂ Nanospheres: Synergetic Catalysis in Hydrolytic Dehydrogenation of Ammonia Borane. Chemistry - A European Journal, 2010, 16, 3132-3137.	3.3	196
192	Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon, 2010, 48, 456-463.	10.3	621
193	Rational Assembly of d $<$ sup $>$ 10 $<$ /sup $>$ Metalâ $^{\circ}$ Organic Frameworks with Helical Nanochannels Based on Flexible V-Shaped Ligand. Crystal Growth and Design, 2010, 10, 806-811.	3.0	88
194	A Series of (6,6)-Connected Porous Lanthanideâ^Organic Framework Enantiomers with High Thermostability and Exposed Metal Sites: Scalable Syntheses, Structures, and Sorption Properties. Inorganic Chemistry, 2010, 49, 10001-10006.	4.0	151
195	Counterion-induced controllable assembly of 2D and 3D metal–organic frameworks: effect of coordination modes of dinuclear Cu(ii) paddle-wheel motifs. CrystEngComm, 2010, 12, 3815.	2.6	35
196	Syntheses, Crystal Structures, and Properties of Five New Transition Metal Molybdenum(VI) Selenites and Tellurites. Inorganic Chemistry, 2009, 48, 11809-11820.	4.0	48
197	Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metalâ^'Organic Framework. Journal of the American Chemical Society, 2009, 131, 11302-11303.	13.7	772
198	Explorations of New Types of Secondâ€Order Nonlinear Optical Materials in Cd(Zn)â€V ^V â€Te ^{IV} â€O Systems. Chemistry - A European Journal, 2008, 14, 1972-1981.	3.3	103

#	Article	IF	CITATIONS
199	La4(Si5.2Ge2.8O18)(TeO3)4 and La2(Si6O13)(TeO3)2: Intergrowth of the lanthanum(III) tellurite layer with the XO4 (X=Si/Ge) tetrahedral layer. Journal of Solid State Chemistry, 2008, 181, 263-268.	2.9	19
200	Syntheses, crystal structures and optical properties of the first strontium selenium(IV) and tellurium(IV) oxychlorides: Sr3(SeO3)(Se2O5)Cl2 and Sr4(Te3O8)Cl4. Journal of Solid State Chemistry, 2008, 181, 345-354.	2.9	31
201	ZnVSe2O7 and Cd6V2Se5O21: New d10 Transition-Metal Selenites with $V(IV)$ or $V(V)$ Cations. Inorganic Chemistry, 2008, 47, 7430-7437.	4.0	52
202	Structures and Properties of Functional Metal Selenites and Tellurites. Inorganic Chemistry, 2008, 47, 8498-8510.	4.0	155
203	CsB ₃ GeO ₇ and K ₂ B ₂ Ge ₃ O ₁₀ : Explorations of New Second-Order Nonlinear Optical Materials in the Borogermanate Systems. Inorganic Chemistry, 2008, 47, 10611-10617.	4.0	68
204	New Luminescent Solids in the Lnâ^'W(Mo)â^'Teâ^'Oâ^'(Cl) Systems. Inorganic Chemistry, 2007, 46, 7012-7023.	4.0	34
205	Ni3(Mo2O8)(XO3) (X = Se, Te):Â The First Nickel Selenite- and Tellurite-Containing Mo4Clusters. Inorganic Chemistry, 2007, 46, 6495-6501.	4.0	36
206	New Organically Templated Copper(I) Sulfites:  the Role of Sulfite Anion as Both Soft and Hard Ligand. Inorganic Chemistry, 2007, 46, 8302-8308.	4.0	17
207	Synthesis, crystal and band structures, and optical properties of a new lanthanide–alkaline earth tellurium(IV) oxide: La2Ba(Te3O8)(TeO3)2. Journal of Solid State Chemistry, 2007, 180, 1764-1769.	2.9	30
208	New Members in the Nin+1(QO3)nX2 Family:  Unusual 3D Network Based on Ni4ClO3 Cubane-like Clusters in Ni7(TeO3)6Cl2. Inorganic Chemistry, 2006, 45, 7593-7599.	4.0	32
209	[Cd2(Te6O13)][Cd2Cl6] and Cd7Cl8(Te7O17):Â Novel Tellurium(IV) Oxide Slabs and Unusual Cadmium Chloride Architectures. Inorganic Chemistry, 2006, 45, 717-721.	4.0	33
210	Synthesis, Crystal Structure and Characterization of the Barium Zinc Tellurate Disilicate: Ba3Zn6[TeO6][Si2O7]2. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2006, 632, 2053-2057.	1.2	8
211	Syntheses, crystal structures and characterizations of BaZn(SeO3)2 and BaZn(TeO3)Cl2. Journal of Solid State Chemistry, 2006, 179, 1911-1917.	2.9	20
212	Synthesis, crystal structure and magnetic property of a new nickel selenite chloride: Ni5(SeO3)4Cl2. Journal of Solid State Chemistry, 2005, 178, 2942-2946.	2.9	21
213	Luminescent Lanthanide Selenites and Tellurites Decorated by MoO4Tetrahedra or MoO6Octahedra:Â Nd2MoSe2O10, Gd2MoSe3O12, La2MoTe3O12, and Nd2MoTe3O12. Inorganic Chemistry, 2005, 44, 9314-9321	. 4.0	50
214	Lightâ€Assisted CO 2 Hydrogenation over Pd 3 Cu@UiOâ€66 Promoted by Active Sites in Close Proximity. Angewandte Chemie, 0, , .	2.0	11