
Kevin Jeanne Dit Fouque

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3819715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fast and Effective Ion Mobility–Mass Spectrometry Separation of <scp>d</scp> -Amino-Acid-Containing Peptides. Analytical Chemistry, 2017, 89, 11787-11794.	6.5	76
2	Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species. Analytical Chemistry, 2019, 91, 5021-5027.	6.5	64
3	Recent advances in biological separations using trapped ion mobility spectrometry – mass spectrometry. TrAC - Trends in Analytical Chemistry, 2019, 116, 308-315.	11.4	52
4	lon Mobility–Mass Spectrometry of Lasso Peptides: Signature of a Rotaxane Topology. Analytical Chemistry, 2015, 87, 1166-1172.	6.5	48
5	Linear and Differential Ion Mobility Separations of Middle-Down Proteoforms. Analytical Chemistry, 2018, 90, 2918-2925.	6.5	43
6	Characterization of Intramolecular Interactions of Cytochrome <i>c</i> Using Hydrogen–Deuterium Exchange-Trapped Ion Mobility Spectrometry–Mass Spectrometry and Molecular Dynamics. Analytical Chemistry, 2017, 89, 8757-8765.	6.5	35
7	Identification of Lasso Peptide Topologies Using Native Nanoelectrospray Ionization-Trapped Ion Mobility Spectrometry–Mass Spectrometry. Analytical Chemistry, 2018, 90, 5139-5146.	6.5	34
8	Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Analytical Chemistry, 2021, 93, 2933-2941.	6.5	32
9	General rules of fragmentation evidencing lasso structures in CID and ETD. Analyst, The, 2018, 143, 1157-1170.	3.5	27
10	Structural signatures of the class III lasso peptide BI-32169 and the branched-cyclic topoisomers using trapped ion mobility spectrometry–mass spectrometry and tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 6287-6296.	3.7	20
11	Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM. Journal of the American Chemical Society, 2021, 143, 18733-18743.	13.7	19
12	Proteoform Differentiation using Tandem Trapped Ion Mobility, Electron Capture Dissociation, and ToF Mass Spectrometry. Analytical Chemistry, 2021, 93, 9575-9582.	6.5	18
13	Signatures of Mechanically Interlocked Topology of Lasso Peptides by Ion Mobility–Mass Spectrometry: Lessons from a Collection of Representatives. Journal of the American Society for Mass Spectrometry, 2017, 28, 315-322.	2.8	17
14	IRMPD Spectroscopy: Evidence of Hydrogen Bonding in the Gas Phase Conformations of Lasso Peptides and their Branched-Cyclic Topoisomers. Journal of Physical Chemistry A, 2016, 120, 3810-3816.	2.5	15
15	Insights from ion mobility-mass spectrometry, infrared spectroscopy, and molecular dynamics simulations on nicotinamide adenine dinucleotide structural dynamics: NAD ⁺ <i>vs.</i> NADH. Physical Chemistry Chemical Physics, 2018, 20, 7043-7052.	2.8	14
16	Measuring the Integrity of Gas-Phase Conformers of Sodiated 25-Hydroxyvitamin D3 by Drift Tube, Traveling Wave, Trapped, and High-Field Asymmetric Ion Mobility. Analytical Chemistry, 2019, 91, 4092-4099.	6.5	13
17	Metal ions induced secondary structure rearrangements: mechanically interlocked lasso <i>vs.</i> unthreaded branched-cyclic topoisomers. Analyst, The, 2018, 143, 2323-2333.	3.5	12
18	Dynamics of the E.Âcoli β-Clamp Dimer Interface and Its Influence on DNA Loading. Biophysical Journal, 2019, 117, 587-601.	0.5	12

#	Article	IF	CITATIONS
19	Evidence of <i>Cis</i> / <i>Trans</i> -Isomerization at Pro7/Pro16 in the Lasso Peptide Microcin J25. Journal of the American Society for Mass Spectrometry, 2019, 30, 1038-1045.	2.8	12
20	Trapped Ion Mobility Spectrometry, Ultraviolet Photodissociation, and Time-of-Flight Mass Spectrometry for Gas-Phase Peptide Isobars/Isomers/Conformers Discrimination. Journal of the American Society for Mass Spectrometry, 2022, 33, 1267-1275.	2.8	12
21	Gasâ€phase conformations of capistruin – comparison of lasso, branched•yclic and linear topologies. Rapid Communications in Mass Spectrometry, 2015, 29, 1411-1419.	1.5	11
22	Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry–Mass Spectrometry. Journal of Physical Chemistry B, 2020, 124, 6257-6265.	2.6	11
23	A Bifunctional Leader Peptidase/ABC Transporter Protein Is Involved in the Maturation of the Lasso Peptide Cochonodin I from <i>Streptococcus suis</i> . Journal of Natural Products, 2021, 84, 2683-2691.	3.0	11
24	Microheterogeneity of Topoisomerase IA/IB and Their DNA-Bound States. ACS Omega, 2019, 4, 3619-3626.	3.5	9
25	Exploring structural signatures of the lanthipeptide prochlorosin 2.8 using tandem mass spectrometry and trapped ion mobility-mass spectrometry. Analytical and Bioanalytical Chemistry, 2021, 413, 4815-4824.	3.7	9
26	Structural Motif Descriptors as a Way To Elucidate the Agonistic or Antagonistic Activity of Growth Hormone–Releasing Hormone Peptide Analogues. ACS Omega, 2018, 3, 7432-7440.	3.5	8
27	Exploring the Conformational Space of Growth-Hormone-Releasing Hormone Analogues Using Dopant Assisted Trapped Ion Mobility Spectrometry–Mass Spectrometry. Journal of Physical Chemistry B, 2019, 123, 6169-6177.	2.6	8
28	Effective discrimination of gas-phase peptide conformers using TIMS-ECD-ToF MS/MS. Analytical Methods, 2021, 13, 5216-5223.	2.7	6
29	AT-hook peptides bind the major and minor groove of AT-rich DNA duplexes. Nucleic Acids Research, 2022, 50, 2431-2439.	14.5	6
30	Nanomolar affinity of EF-hands in neuronal calcium sensor 1 for bivalent cations Pb2+, Mn2+, and Hg2+. Metallomics, 2022, 14, .	2.4	6
31	Structural Insights from Tandem Mass Spectrometry, Ion Mobility-Mass Spectrometry, and Infrared/Ultraviolet Spectroscopy on Sphingonodin I: Lasso vs Branched-Cyclic Topoisomers. Journal of the American Society for Mass Spectrometry, 2021, 32, 1096-1104.	2.8	4
32	Exploring the Conformational and Binding Dynamics of HMGA2·DNA Complexes Using Trapped Ion Mobility Spectrometry–Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1103-1112.	2.8	4
33	Exploring the Conformations and Binding Location of HMGA2·DNA Complexes Using Ion Mobility Spectrometry and 193 nm Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1092-1102.	2.8	2
34	Salt bridges govern the structural heterogeneity of heme protein interactions and porphyrin networks: microperoxidase-11. RSC Advances, 2020, 10, 33861-33867.	3.6	0