Robert S White

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3818875/publications.pdf

Version: 2024-02-01

94433 64796 9,075 81 37 79 citations h-index g-index papers 89 89 89 4723 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. Journal of Geophysical Research, 1989, 94, 7685-7729.	3.3	2,572
2	Oceanic crustal thickness from seismic measurements and rare earth element inversions. Journal of Geophysical Research, 1992, 97, 19683-19715.	3.3	1,124
3	Mantle plumes and flood basalts. Journal of Geophysical Research, 1995, 100, 17543-17585.	3.3	522
4	Segmented lateral dyke growth in a rifting event at $B\tilde{A}_i$ r \tilde{A}° arbunga volcanic system, Iceland. Nature, 2015, 517, 191-195.	27.8	436
5	Magmatism at rifted continental margins. Nature, 1987, 330, 439-444.	27.8	396
6	Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth and Planetary Science Letters, 1994, 121, 435-449.	4.4	347
7	Lower-crustal intrusion on the North Atlantic continental margin. Nature, 2008, 452, 460-464.	27.8	271
8	Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth and Planetary Science Letters, 2000, 181, 409-428.	4.4	196
9	FÃ r be-Iceland Ridge Experiment 1. Crustal structure of northeastern Iceland. Journal of Geophysical Research, 1997, 102, 7849-7866.	3.3	161
10	Fäoe-Iceland Ridge Experiment 2. Crustal structure of the Krafla central volcano. Journal of Geophysical Research, 1997, 102, 7867-7886.	3.3	145
11	Dynamics of dyke intrusion in the mid-crust of Iceland. Earth and Planetary Science Letters, 2011, 304, 300-312.	4.4	143
12	Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. Geophysical Journal International, 1998, 135, 1131-1149.	2.4	126
13	Strikeâ€slip faulting during the 2014 Bárðarbungaâ€Holuhraun dike intrusion, central Iceland. Geophysical Research Letters, 2016, 43, 1495-1503.	4.0	117
14	The Hatton Bank continental margin-II. Deep structure from two-ship expanding spread seismic profiles. Geophysical Journal International, 1989, 96, 295-309.	2.4	108
15	Rift–plume interaction in the North Atlantic. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 319-339.	3.4	105
16	Crustal structure of Edoras Bank continental margin and mantle thermal anomalies beneath the North Atlantic. Journal of Geophysical Research, 1997, 102, 3109-3129.	3.3	104
17	Coalescence microseismic mapping. Geophysical Journal International, 2013, 195, 1773-1785.	2.4	95
18	The Hatton Bank continental margin-III. Structure from wide-angle OBS and multichannel seismic refraction profiles. Geophysical Journal International, 1989, 98, 367-384.	2.4	93

#	Article	IF	CITATIONS
19	Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. Journal of Geophysical Research, 2001, 106, 6347-6368.	3.3	91
20	The structure and subsidence of Rockall Trough from twoâ€ship seismic experiments. Journal of Geophysical Research, 1990, 95, 19821-19837.	3.3	85
21	Crustal structure of central and northern Iceland from analysis of teleseismic receiver functions. Geophysical Journal International, 2000, 143, 163-184.	2.4	84
22	Crustal structure of the Hatton and the conjugate east Greenland rifted volcanic continental margins, NE Atlantic. Journal of Geophysical Research, 2009, 114, .	3.3	72
23	Using microearthquakes to track repeated magma intrusions beneath the Eyjafjallaj $ ilde{A}\P$ kull stratovolcano, Iceland. Journal of Geophysical Research, 2012, 117, .	3.3	65
24	Imaging and regional distribution of basalt flows in the Faeroe-Shetland Basin. Geophysical Prospecting, 2003, 51, 215-231.	1.9	64
25	Magma mobilization by downwardâ€propagating decompression of the Eyjafjallajökull volcanic plumbing system. Geophysical Research Letters, 2012, 39, .	4.0	63
26	Crustal structure east of the Faroe Islands; mapping sub-basalt sediments using wide-angle seismic data. Petroleum Geoscience, 1999, 5, 161-172.	1.5	60
27	Lower-crustal earthquakes caused by magma movement beneath Askja volcano on the north Iceland rift. Bulletin of Volcanology, 2010, 72, 55-62.	3.0	59
28	Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Science Advances, 2017, 3, e1700219.	10.3	58
29	Influence of the Iceland mantle plume on oceanic crust generation in the North Atlantic. Geophysical Journal International, 2008, 173, 168-188.	2.4	52
30	Ridge-plume interaction in the North Atlantic and its influence on continental breakup and seafloor spreading. Geological Society Special Publication, 2002, 197, 15-37.	1.3	51
31	Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy. Geophysical Research Letters, 2017, 44, 3710-3718.	4.0	45
32	Motion in the north Iceland volcanic rift zone accommodated by bookshelf faulting. Nature Geoscience, 2014, 7, 29-33.	12.9	44
33	The magmatic plumbing system of the Askja central volcano, Iceland, as imaged by seismic tomography. Journal of Geophysical Research: Solid Earth, 2016, 121, 7211-7229.	3.4	43
34	Seismic attenuation of Atlantic margin basalts: Observations and modeling. Geophysics, 2006, 71, B211-B221.	2.6	42
35	Seismic imaging of the shallow crust beneath the Krafla central volcano, NE Iceland. Journal of Geophysical Research: Solid Earth, 2015, 120, 7156-7173.	3.4	40
36	Triggered earthquakes suppressed by an evolving stress shadow from a propagating dyke. Nature Geoscience, 2015, 8, 629-632.	12.9	40

3

#	Article	IF	Citations
37	Evolution of a lateral dike intrusion revealed by relatively-relocated dike-induced earthquakes: The 2014–15 Bárðarbunga–Holuhraun rifting event, Iceland. Earth and Planetary Science Letters, 2019, 506, 53-63.	4.4	39
38	Volcanism on the Rockall continental margin. Journal of the Geological Society, 1997, 154, 531-536.	2.1	38
39	Mapping the iceâ€bed interface characteristics of Rutford Ice Stream, West Antarctica, using microseismicity. Journal of Geophysical Research F: Earth Surface, 2015, 120, 1881-1894.	2.8	37
40	A Bayesian method for microseismic source inversion. Geophysical Journal International, 2016, 206, 1009-1038.	2.4	37
41	The Hatton Bank continental margin-I. Shallow structure from two-ship expanding spread seismic profiles. Geophysical Journal International, 1989, 96, 273-294.	2.4	36
42	Intense Seismicity During the 2014–2015 Bárðarbungaâ€Holuhraun Rifting Event, Iceland, Reveals the Nature of Dikeâ€Induced Earthquakes and Caldera Collapse Mechanisms. Journal of Geophysical Research: Solid Earth, 2019, 124, 8331-8357.	3.4	36
43	The structure of the Faeroe–Shetland Trough from integrated deep seismic and potential field modelling. Journal of the Geological Society, 2001, 158, 409-412.	2.1	35
44	Dynamics of the Askja caldera July 2014 landslide, Iceland, from seismic signal analysis: precursor, motion and aftermath. Earth Surface Dynamics, 2018, 6, 467-485.	2.4	34
45	Structure of the GrÃmsvötn central volcano under the Vatnajökull icecap, Iceland. Geophysical Journal International, 2007, 168, 863-876.	2.4	33
46	Deep crustal melt plumbing of Bárðarbunga volcano, Iceland. Geophysical Research Letters, 2017, 44, 8785-8794.	4.0	32
47	Crustal seismic velocity responds to a magmatic intrusion and seasonal loading in Iceland's Northern Volcanic Zone. Science Advances, 2019, 5, eaax6642.	10.3	31
48	Depth imaging of basalt flows in the Faeroe-Shetland Basin. Geophysical Journal International, 2003, 152, 353-371.	2.4	30
49	Long-period seismicity reveals magma pathways above a laterally propagating dyke during the 2014–15 Bárðarbunga rifting event, Iceland. Earth and Planetary Science Letters, 2018, 490, 216-229.	4.4	30
50	Identification and inversion of converted shear waves: case studies from the European North Atlantic continental margins. Geophysical Journal International, 2009, 179, 381-400.	2.4	29
51	Building icelandic igneous crust by repeated melt injections. Journal of Geophysical Research: Solid Earth, 2015, 120, 7771-7788.	3.4	27
52	Imaging igneous rocks on the North Atlantic rifted continental margin. Geophysical Journal International, 2009, 179, 1024-1038.	2.4	25
53	Multiple melt injection along a spreading segment at Askja, Iceland. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	25
54	Probabilistic earthquake locations of induced seismicity in the Groningen region, the Netherlands. Geophysical Journal International, 2020, 222, 507-516.	2.4	24

#	Article	IF	Citations
55	Ambient noise tomography reveals upper crustal structure of Icelandic rifts. Earth and Planetary Science Letters, 2017, 466, 20-31.	4.4	23
56	Crustal Formation on a Spreading Ridge Above a Mantle Plume: Receiver Function Imaging of the Icelandic Crust. Journal of Geophysical Research: Solid Earth, 2018, 123, 5190-5208.	3.4	23
57	Seismicity of the Askja and Bárðarbunga volcanic systems of Iceland, 2009–2015. Journal of Volcanology and Geothermal Research, 2020, 391, 106432.	2.1	22
58	Reconciling the Longâ€Term Relationship Between Reservoir Pore Pressure Depletion and Compaction in the Groningen Region. Journal of Geophysical Research: Solid Earth, 2019, 124, 6165-6178.	3.4	21
59	Correction to "Multiple melt injection along a spreading segment at Askja, Iceland― Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	20
60	MTfit: A Bayesian Approach to Seismic Moment Tensor Inversion. Seismological Research Letters, 2018, 89, 1507-1513.	1.9	20
61	Episodicity of seismicity accompanying melt intrusion into the crust. Geophysical Research Letters, 2012, 39, .	4.0	19
62	Tomographic image of melt storage beneath Askja Volcano, Iceland using local microseismicity. Geophysical Research Letters, 2013, 40, 5040-5046.	4.0	19
63	Seismogenic magma intrusion before the 2010 eruption of Eyjafjallajökull volcano, Iceland. Geophysical Journal International, 2014, 198, 906-921.	2.4	19
64	Seismic Amplitude Ratio Analysis of the 2014–2015 Bárarbungaâ€Holuhraun Dike Propagation and Eruption. Journal of Geophysical Research: Solid Earth, 2018, 123, 264-276.	3.4	19
65	The composition and structure of volcanic rifted continental margins in the North Atlantic: Further insight from shear waves. Tectonophysics, 2011, 508, 22-33.	2.2	18
66	Triggering of microearthquakes in Iceland by volatiles released from a dyke intrusion. Geophysical Journal International, 2013, 194, 1738-1754.	2.4	18
67	Icequake Source Mechanisms for Studying Glacial Sliding. Journal of Geophysical Research F: Earth Surface, 2020, 125, e2020JF005627.	2.8	18
68	Melt movement through the Icelandic crust. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180010.	3.4	17
69	Precise hypocentre relocation of microearthquakes in a high-temperature geothermal field: the TorfajŶkull central volcano, Iceland. Geophysical Journal International, 2004, 160, 371-388.	2.4	14
70	When continents rift. Nature, 1987, 327, 191-191.	27.8	12
71	Structure of the Hatton Basin and adjacent continental margin. Petroleum Geology Conference Proceedings, 2005, 6, 947-956.	0.7	12
72	Imaging Torfajökull's Magmatic Plumbing System With Seismic Interferometry and Phase Velocity Surface Wave Tomography. Journal of Geophysical Research: Solid Earth, 2019, 124, 2920-2940.	3.4	12

#	Article	IF	CITATIONS
73	Automated detection of basal icequakes and discrimination from surface crevassing. Annals of Glaciology, 2019, 60, 167-181.	1.4	11
74	Constraints on volcanism, igneous intrusion and stretching on the Rockall–Faroe continental margin. Petroleum Geology Conference Proceedings, 2010, 7, 831-842.	0.7	9
75	Closing crack earthquakes within the Krafla caldera, North Iceland. Geophysical Journal International, 2016, 207, 1137-1141.	2.4	7
76	Integrating streamer and ocean-bottom seismic data for sub-basalt imaging on the Atlantic Margin. Petroleum Geoscience, 2010, 16, 349-366.	1.5	5
77	Breaking the Ice: Identifying Hydraulically Forced Crevassing. Geophysical Research Letters, 2020, 47, e2020GL090597.	4.0	5
78	Focused seismicity triggered by flank instability on Kīlauea's Southwest Rift Zone. Journal of Volcanology and Geothermal Research, 2018, 353, 95-101.	2.1	4
79	Oceanic crustal flow in Iceland observed using seismic anisotropy. Nature Geoscience, 2021, 14, 168-173.	12.9	4
80	Wide-angle refraction and reflection. , 2020, , 557-570.		1
81	On the Origin of Seismic Anisotropy in the Shallow Crust of the Northern Volcanic Zone, Iceland. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	1