Sergey N Rashkeev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/381812/publications.pdf

Version: 2024-02-01

91 papers 3,374 citations

147801 31 h-index 56 g-index

93 all docs 93 docs citations

93 times ranked 4002 citing authors

#	Article	IF	CITATIONS
1	Efficientab initiomethod for the calculation of frequency-dependent second-order optical response in semiconductors. Physical Review B, 1998, 57, 3905-3919.	3.2	371
2	Dopants adsorbed as single atoms prevent degradation of catalysts. Nature Materials, 2004, 3, 143-146.	27. 5	199
3	Thermal stability and catalytic activity of gold nanoparticles supported on silica. Journal of Catalysis, 2009, 262, 92-101.	6.2	170
4	Defect Generation by Hydrogen at the Si-SiO2Interface. Physical Review Letters, 2001, 87, 165506.	7.8	159
5	Electronic Band Structure of SiC Polytypes: A Discussion of Theory and Experiment. Physica Status Solidi (B): Basic Research, 1997, 202, 5-33.	1.5	150
6	Resonant Raman scattering in YBa2Cu3O7: Band theory and experiment. Physical Review Letters, 1990, 65, 3048-3051.	7.8	129
7	COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar. Science of the Total Environment, 2021, 774, 145608.	8.0	120
8	Hydrogen Bonding and Stability of Hybrid Organic–Inorganic Perovskites. ChemSusChem, 2016, 9, 2648-2655.	6.8	109
9	Shear-strain-induced chemical reactivity of layered molecular crystals. Applied Physics Letters, 2007, 90, 151913.	3.3	97
10	Second-harmonic generation and birefringence of some ternary pnictide semiconductors. Physical Review B, 1999, 59, 2737-2748.	3.2	87
11	Quantitative theory of superconductivity in dopedC60. Physical Review B, 1992, 45, 5114-5117.	3.2	79
12	First-principles calculations of the optical properties of metals. Journal of Physics F: Metal Physics, 1988, 18, 833-849.	1.6	75
13	Origin of Anomalous Pt-Pt Distances in the Pt/Alumina Catalytic System. ChemPhysChem, 2004, 5, 1893-1897.	2.1	68
14	Atomic-scale mechanisms of oxygen electrode delamination in solid oxide electrolyzer cells. International Journal of Hydrogen Energy, 2012, 37, 1280-1291.	7.1	59
15	Microscopic studies of the optical spectra of YBa2Cu3O7. Physical Review Letters, 1989, 63, 1880-1883.	7.8	54
16	Optical-absorption bands in the 1–3 eV range inn-type SiC polytypes. Physical Review B, 1999, 59, 12890-12899.	3.2	54
17	Interplay of Decomposition Mechanisms at Shear-Strain Interface. Journal of Physical Chemistry C, 2009, 113, 17-20.	3.1	49
18	Second-harmonic generation in SiC polytypes. Physical Review B, 1998, 57, 9705-9715.	3.2	47

#	Article	IF	CITATIONS
19	Catalytic activity of supported metal particles for sulfuric acid decomposition reaction. Catalysis Today, 2009, 139, 291-298.	4.4	47
20	Negative bias-temperature instabilities in metal–oxide–silicon devices with SiO2 and SiOxNy/HfO2 gate dielectrics. Applied Physics Letters, 2004, 84, 4394-4396.	3.3	46
21	Atomic Scale Mechanism of the Transformation of ³ -Alumina tol, Alumina. Physical Review Letters, 2002, 89, 235501.	7.8	45
22	Ethanol oxidation on metal oxide-supported platinum catalysts. Catalysis Today, 2009, 147, 107-114.	4.4	43
23	Enhancing Intrinsic Stability of Hybrid Perovskite Solar Cell by Strong, yet Balanced, Electronic Coupling. Scientific Reports, 2016, 6, 30305.	3.3	42
24	Domain Walls Conductivity in Hybrid Organometallic Perovskites and Their Essential Role in CH3NH3Pbl3 Solar Cell High Performance. Scientific Reports, 2015, 5, 11467.	3.3	41
25	X-ray absorption, glancing-angle reflectivity, and theoretical study of the N K- and GaM2,3-edge spectra in GaN. Physical Review B, 1997, 55, 2612-2622.	3.2	40
26	An efficient descriptor model for designing materials for solar cells. Npj Computational Materials, $2015, 1, .$	8.7	39
27	Electronic excitations and decomposition of 1,1-diamino-2,2-dinitroethylene. Applied Physics Letters, 2003, 82, 1371-1373.	3.3	38
28	Oxidation and hydrogen uptake in zirconium, Zircaloy-2 and Zircaloy-4: Computational thermodynamics and ab initio calculations. Journal of Nuclear Materials, 2014, 444, 65-75.	2.7	38
29	Fermi-surface and low-energy excitation spectrum of YBa2Cu3O7: Role of the Ba-O plane. Physical Review B, 1992, 45, 5103-5106.	3.2	36
30	Dual behavior of H+ at Si–SiO2 interfaces: Mobility versus trapping. Applied Physics Letters, 2002, 81, 1839-1841.	3.3	35
31	Self-Accelerated Mechanochemistry in Nitroarenes. Journal of Physical Chemistry Letters, 2010, 1, 363-367.	4.6	35
32	Hydrogen bonding: a mechanism for tuning electronic and optical properties of hybrid organic–inorganic frameworks. Npj Computational Materials, 2016, 2, .	8.7	32
33	Electronic transport in nanoscale contacts with rough boundaries. Physical Review B, 1996, 53, 13074-13085.	3.2	31
34	Electronic transport in organometallic perovskite CH ₃ NH ₃ PbI ₃ : The role of organic cation orientations. Applied Physics Letters, 2016, 108, 053901.	3.3	28
35	Sp2 carbon embedded in Al-6061 and Al-7075 alloys in the form of crystalline graphene nanoribbons. Carbon, 2016, 107, 56-66.	10.3	28
36	Nonspherical rigid-muffin-tin calculations of electron-phonon coupling in high-Tcperovskites. Physical Review B, 1990, 42, 366-370.	3.2	27

#	Article	IF	CITATIONS
37	Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in the Silver Lattice. Advanced Functional Materials, 2015, 25, 4768-4777.	14.9	27
38	Extending Shannon's ionic radii database using machine learning. Physical Review Materials, 2021, 5, .	2.4	27
39	Electronic Raman continuum forYBa2Cu3O7â^Î: Effects of inelastic scattering and interband transitions. Physical Review B, 1993, 47, 11603-11606.	3.2	25
40	Hydrogen passivation and activation of oxygen complexes in silicon. Applied Physics Letters, 2001, 78, 1571-1573.	3.3	23
41	Modification of Au/TiO ₂ Nanosystems by SiO ₂ Monolayers: Toward the Control of the Catalyst Activity and Stability. Journal of Physical Chemistry C, 2010, 114, 2996-3002.	3.1	23
42	Low-energy interband transitions in YBa2Cu3O7. Physical Review B, 1992, 46, 11232-11235.	3.2	21
43	Strong enhancement of second-order response coefficients in tellurium containing Ag–Ill–VI2 compounds. Applied Physics Letters, 2000, 77, 190-192.	3.3	20
44	First-principles calculations of second-order optical response functions in chalcopyrite semiconductors. Journal of Physics and Chemistry of Solids, 2003, 64, 1615-1619.	4.0	20
45	Role of Electronic versus Atomic Relaxations in Stokes Shifts at Defects in Solids. Physical Review Letters, 2003, 91, 226402.	7.8	20
46	Structural Stability and Catalytic Activity of Lanthanum-Based Perovskites. Journal of Physical Chemistry C, 2011, 115, 8709-8715.	3.1	20
47	Polarization switching in optical microsphere resonator. Applied Physics Letters, 2002, 80, 3503-3505.	3.3	19
48	A comprehensive risk assessment of toxic elements in international brands of face foundation powders. Environmental Research, 2021, 192, 110274.	7. 5	19
49	Band gap tuning in aluminum doped two-dimensional hexagonal boron nitride. Materials Chemistry and Physics, 2020, 250, 123176.	4.0	19
50	Electronic structure, ferromagnetism, and EELS spectra of crystalline alloysFenB andNinB (n=1,2,3): Aspects of universal behavior. Physical Review B, 1993, 48, 6260-6270.	3.2	18
51	Electronic structure, Schottky barrier, and optical spectra of the SiC/TiC {111} interface. Physical Review B, 1997, 55, 16472-16486.	3.2	18
52	Hydrogen-Induced Initiation of Corrosion in Aluminum. Journal of Physical Chemistry C, 2007, 111, 7175-7178.	3.1	18
53	Effects of Hydrogen on the Radiation Response of Bipolar Transistors: Experiment and Modeling. IEEE Transactions on Nuclear Science, 2008, 55, 3039-3045.	2.0	18
54	Molecular Mechanisms of Shear Strain Sensitivity of the Energetic Crystals DADNE and TATB. Journal of Energetic Materials, 2010, 28, 66-77.	2.0	18

#	Article	IF	CITATIONS
55	Effects of thermophoresis on dust accumulation on solar panels. Solar Energy, 2020, 211, 412-417.	6.1	18
56	Multi-Scale Simulation of Radiation Effects in Electronic Devices. IEEE Transactions on Nuclear Science, 2008, 55, 1891-1902.	2.0	17
57	Defect states at organic–inorganic interfaces: Insight from first principles calculations for pentaerythritol tetranitrate on MgO surface. Surface Science, 2015, 637-638, 19-28.	1.9	17
58	Intrinsic stability enhancement and ionic migration reduction by fluorinated cations incorporated in hybrid lead halide perovskites. Journal of Materials Chemistry C, 2019, 7, 5299-5306.	5.5	17
59	Breakdown of conductance quantization in quantum point contacts with realistic impurity potentials. Journal of Physics Condensed Matter, 1995, 7, 6253-6270.	1.8	15
60	Control of oxygen delamination in solid oxide electrolyzer cells via modifying operational regime. Applied Physics Letters, 2011, 99, 173506.	3.3	15
61	Controlling chromium vaporization from interconnects with nickel coatings in solid oxide devices. International Journal of Hydrogen Energy, 2014, 39, 15031-15038.	7.1	15
62	Universality in Electronic Structure and EELS Spectra of Fe-B and Ni-B Crystalline and Amorphous Systems. Europhysics Letters, 1994, 26, 43-49.	2.0	11
63	Solar Cell Materials by Design: Hybrid Pyroxene Cornerâ€Sharing VO ₄ Tetrahedral Chains. ChemSusChem, 2017, 10, 1931-1942.	6.8	10
64	Tunable high workfunction contacts: Doped graphene. Applied Surface Science, 2020, 509, 144893.	6.1	10
65	Doped Nickel Oxide Carrier-Selective Contact for Silicon Solar Cells. IEEE Journal of Photovoltaics, 2021, 11, 1176-1187.	2.5	10
66	Two-color optical technique for characterization of x-ray radiation-enhanced electron transport in SiO2. Journal of Applied Physics, 2003, 93, 1865-1870.	2.5	9
67	Highly accurate machine learning prediction of crystal point groups for ternary materials from chemical formula. Scientific Reports, 2022, 12, 1577.	3.3	9
68	The Structural Disorder and Lattice Stability of $(Ba,Sr)(Co,Fe)O < sub>3 < / sub> Complex Perovskites. ECS Transactions, 2011, 35, 2077-2084.$	0.5	8
69	Ultra-high temperature steam corrosion of complex silicates for nuclear applications: A computational study. Journal of Nuclear Materials, 2014, 444, 56-64.	2.7	8
70	Photochemistry of the α-Al2O3-PETN Interface. Molecules, 2016, 21, 289.	3.8	8
71	Radiation-induced acceptor deactivation in bipolar devices: Effects of electric field. Applied Physics Letters, 2003, 83, 4646-4648.	3.3	7
72	Achieving tunable chemical reactivity through photo-initiation of energetic materials at metal oxide surfaces. Physical Chemistry Chemical Physics, 2020, 22, 25284-25296.	2.8	6

#	Article	IF	Citations
73	Interaction of gas molecules with crystalline polymer separation membranes: Atomic-scale modeling and first-principles calculations. Journal of Membrane Science, 2011, 384, 176-183.	8.2	5
74	Effect of Affinity Discontinuity on Heterojunction p-i-n Solar Cell Performance. IEEE Journal of Photovoltaics, 2020, 10, 458-466.	2.5	5
75	Strain-rate sensitivity limit diagrams and plastic instabilities in a 6xxx series aluminum alloy Part I: Analysis of temporal stress–strain serrations. Computational Materials Science, 2002, 24, 295-309.	3.0	4
76	Beryllium Adsorption at Transition Aluminas: Implications for Environmental Science and Oxidation of Aluminum Alloys. Journal of Physical Chemistry C, 2010, 114, 14208-14212.	3.1	4
77	Enhancing the electronic dimensionality of hybrid organic–inorganic frameworks by hydrogen bonded molecular cations. Materials Horizons, 2019, 6, 1187-1196.	12.2	4
78	Single-Atom Sensitivity for Solving Catalysis Problems. Microscopy and Microanalysis, 2004, 10, 460-461.	0.4	3
79	Fischer–Tropsch Synthesis over Supported Pt–Mo Catalyst: Toward Bimetallic Catalyst Optimization. Journal of Physical Chemistry C, 2013, 117, 4450-4458.	3.1	3
80	A simple reaction-diffusion model for initial stages of biofouling in reverse osmosis membranes. Environmental Research, 2020, 190, 110000.	7. 5	3
81	Bifacial Schottkyâ€Junction Plasmonicâ€Based Solar Cell. Energy Technology, 2020, 8, 1901280.	3.8	3
82	Melting Phase Transitions and Catalytic Activity of Bilayer Gold Nanoclusters. Journal of Physical Chemistry C, 2009, 113, 10517-10520.	3.1	2
83	Improved Photoactivity of Pyroxene Silicates by Cation Substitutions. ChemPhysChem, 2018, 19, 943-953.	2.1	2
84	Spin/carrier dynamics at semiconductor interfaces using intense, tunable, ultra-fast lasers. Physica Status Solidi (B): Basic Research, 2003, 240, 490-499.	1.5	1
85	HYDROGEN AT THE SI/SiO2 INTERFACE: FROM ATOMIC-SCALE CALCULATIONS TO ENGINEERING MODELS. International Journal of High Speed Electronics and Systems, 2004, 14, 575-580.	0.7	1
86	Performance, Reliability, Radiation Effects, and Aging Issues in Microelectronics - From Atomic-Scale Physics to Engineering-Level Modeling. ECS Transactions, 2009, 19, 319-337.	0.5	1
87	Oxychalcogenide Perovskite Solar Cells: A Multiscale Design Approach. Energy Technology, 2020, 8, 1900766.	3.8	1
88	Optimized Ni _{1â^'x} Al _x O hole transport layer for silicon solar cells. RSC Advances, 2020, 10, 22377-22386.	3.6	1
89	Synthetic Alloys: Synthetic Crystals of Silver with Carbon: 3D Epitaxy of Carbon Nanostructures in the Silver Lattice (Adv. Funct. Mater. 30/2015). Advanced Functional Materials, 2015, 25, 4746-4746.	14.9	0
90	Growth of Hybrid Perovskites (HP) Light Harvesting Layer and TiO 2 Electron Transport Material for Solar Cells Application. , 2016, , .		0

#	#	Article	lF	CITATIONS
Ç	91	Achieving tunable sensitivity in composite high-energy density materials. AIP Conference Proceedings, 2017, , .	0.4	0