Marina Galand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/381769/publications.pdf

Version: 2024-02-01

126 papers 4,607 citations

76326 40 h-index 62 g-index

135 all docs

135 docs citations

135 times ranked 3487 citing authors

#	Article	IF	Citations
1	AMBITION – comet nucleus cryogenic sample return. Experimental Astronomy, 2022, 54, 1077-1128.	3.7	4
2	Cometary plasma science. Experimental Astronomy, 2022, 54, 1129-1167.	3.7	3
3	Energy deposition in Saturn's equatorial upper atmosphere. Icarus, 2022, 372, 114724.	2.5	7
4	Science goals and new mission concepts for future exploration of Titan's atmosphere, geology and habitability: titan POlar scout/orbitEr and in situ lake lander and DrONe explorer (POSEIDON). Experimental Astronomy, 2022, 54, 911-973.	3.7	5
5	Multi-instrument analysis of far-ultraviolet aurora in the southern hemisphere of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2021, 647, A119.	5.1	6
6	Far-ultraviolet aurora identified at comet 67P/Churyumov-Gerasimenko. Nature Astronomy, 2020, 4, 1084-1091.	10.1	11
7	Simulations of ion sputtering at Ganymede. Icarus, 2020, 351, 113918.	2.5	14
8	Fieldâ€Aligned Photoelectron Energy Peaks at High Altitude and on the Nightside of Titan. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006252.	3.6	5
9	Ionospheric total electron content of comet 67P/Churyumov-Gerasimenko. Astronomy and Astrophysics, 2020, 635, A51.	5.1	3
10	Electron dynamics near diamagnetic regions of comet 67P/Churyumov- Gerasimenko. Planetary and Space Science, 2020, 187, 104924.	1.7	4
11	Constraining Ganymede's neutral and plasma environments through simulations of its ionosphere and Galileo observations. Icarus, 2020, 343, 113691.	2.5	12
12	ROSINA ion zoo at Comet 67P. Astronomy and Astrophysics, 2020, 642, A27.	5.1	14
13	The Evolution of the Electron Number Density in the Coma of Comet 67P at the Location of Rosetta from 2015 November through 2016 March. Astrophysical Journal, 2019, 881, 6.	4.5	7
14	Building a Weakly Outgassing Comet from a Generalized Ohm's Law. Physical Review Letters, 2019, 123, 055101.	7.8	21
15	Modelling H ₃ ⁺ in planetary atmospheres: effects of vertical gradients on observed quantities. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190067.	3.4	10
16	Comparative study of photo-produced ionosphere in the close environment of comets. Astronomy and Astrophysics, 2019, 630, A47.	5.1	15
17	First 3D test particle model of Ganymede's ionosphere. Icarus, 2019, 330, 42-59.	2.5	19
18	Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta. Astronomy and Astrophysics, 2019, 630, A42.	5.1	18

#	Article	IF	CITATIONS
19	Influence of collisions on ion dynamics in the inner comae of four comets. Astronomy and Astrophysics, 2019, 630, A48.	5.1	4
20	Solar wind charge exchange in cometary atmospheres. Astronomy and Astrophysics, 2019, 630, A37.	5.1	21
21	Plasma source and loss at comet 67P during the Rosetta mission. Astronomy and Astrophysics, 2018, 618, A77.	5.1	38
22	Saturn's Ionosphere. , 2018, , 196-223.		3
23	A chemical survey of exoplanets with ARIEL. Experimental Astronomy, 2018, 46, 135-209.	3.7	249
24	Cometary plasma response to interplanetary corotating interaction regions during 2016 June–September: a quantitative study by the Rosetta Plasma Consortium. Monthly Notices of the Royal Astronomical Society, 2018, 480, 4544-4556.	4.4	26
25	On the origin of molecular oxygen in cometary comae. Nature Communications, 2018, 9, 2580.	12.8	22
26	Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta. Monthly Notices of the Royal Astronomical Society, 2017, 469, S118-S129.	4.4	39
27	Effective ion speeds at â^½200–250Âkm from comet 67P/Churyumov–Gerasimenko near perihelion. Monthly Notices of the Royal Astronomical Society, 2017, 469, S142-S148.	4.4	29
28	Diamagnetic region(s): structure of the unmagnetized plasma around Comet 67P/CG. Monthly Notices of the Royal Astronomical Society, 2017, 469, S372-S379.	4.4	51
29	Ion composition at comet 67P near perihelion: Rosetta observations and model-based interpretation. Monthly Notices of the Royal Astronomical Society, 2017, 469, S427-S442.	4.4	28
30	Evolution of the ion environment of comet 67P during the Rosetta mission as seen by RPC-ICA. Monthly Notices of the Royal Astronomical Society, 2017, 469, S252-S261.	4.4	55
31	Sources of Ionospheric Variability at Mars. Journal of Geophysical Research: Space Physics, 2017, 122, 9670-9684.	2.4	40
32	Effects of the convective field on weakly outgassing comets. Monthly Notices of the Royal Astronomical Society, 2017, 469, S824-S841.	4.4	2
33	Effect of stellar flares on the upper atmospheres of HD 189733b and HD 209458b. Astronomy and Astrophysics, 2017, 608, A75.	5.1	26
34	Impact of a cometary outburst on its ionosphere. Astronomy and Astrophysics, 2017, 607, A34.	5.1	21
35	EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars. Astronomy and Astrophysics, 2016, 587, A87.	5.1	19
36	RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko. Monthly Notices of the Royal Astronomical Society, 2016, 462, S9-S22.	4.4	62

#	Article	IF	CITATIONS
37	MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY. Astronomical Journal, 2016, 152, 59.	4.7	24
38	Ion chemistry in the coma of comet 67P near perihelion. Monthly Notices of the Royal Astronomical Society, 2016, 462, S67-S77.	4.4	28
39	SUPRATHERMAL ELECTRONS IN TITAN'S SUNLIT IONOSPHERE: MODEL–OBSERVATION COMPARISONS. Astrophysical Journal, 2016, 826, 131.	4.5	8
40	The 2016 Feb 19 outburst of comet 67P/CG: an ESA Rosetta multi-instrument study. Monthly Notices of the Royal Astronomical Society, 2016, 462, S220-S234.	4.4	60
41	Ionospheric plasma of comet 67P probed by <i>Rosetta</i> at 3Âau from the Sun. Monthly Notices of the Royal Astronomical Society, 2016, 462, S331-S351.	4.4	75
42	PREDICTION OF FORBIDDEN ULTRAVIOLET AND VISIBLE EMISSIONS IN COMET 67P/CHURYUMOV–GERASIMENKO. Astrophysical Journal, 2016, 818, 102.	4.5	5
43	Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra. Space Sciences Series of ISSI, 2016, , 99-179.	0.0	O
44	ON THE ELECTRON-TO-NEUTRAL NUMBER DENSITY RATIO IN THE COMA OF COMET 67P/CHURYUMOV–GERASIMENKO: GUIDING EXPRESSION AND SOURCES FOR DEVIATIONS. Astrophysical Journal, 2015, 812, 54.	4.5	31
45	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
46	Influence of local ionization on ionospheric densities in Titan's upper atmosphere. Journal of Geophysical Research: Space Physics, 2015, 120, 5899-5921.	2.4	10
47	ROSINA/DFMS and IES observations of 67P: lon-neutral chemistry in the coma of a weakly outgassing comet. Astronomy and Astrophysics, 2015, 583, A2.	5.1	43
48	Time variability and heterogeneity in the coma of 67P/Churyumov-Gerasimenko. Science, 2015, 347, aaa0276.	12.6	222
49	The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. Journal of Geophysical Research E: Planets, 2015, 120, 278-286.	3.6	22
50	Dayâ€toâ€night transport in the Martian ionosphere: Implications from total electron content measurements. Journal of Geophysical Research: Space Physics, 2015, 120, 2333-2346.	2.4	38
51	ON THE POSSIBILITY OF SIGNIFICANT ELECTRON DEPLETION DUE TO NANOGRAIN CHARGING IN THE COMA OF COMET 67P/CHURYUMOV-GERASIMENKO NEAR PERIHELION. Astrophysical Journal, 2015, 798, 130.	4.5	15
52	XUV-driven mass loss from extrasolar giant planets orbiting active stars. Icarus, 2015, 250, 357-367.	2.5	123
53	N2 state population in Titan's atmosphere. Icarus, 2015, 260, 29-59.	2.5	15
54	Ionization balance in Titan's nightside ionosphere. Icarus, 2015, 248, 539-546.	2.5	22

#	Article	IF	Citations
55	Saturn ring rain: Model estimates of water influx into Saturn's atmosphere. Icarus, 2015, 245, 355-366.	2.5	35
56	Auroral Processes at the Giant Planets: Energy Deposition, Emission Mechanisms, Morphology and Spectra. Space Science Reviews, 2015, 187, 99-179.	8.1	86
57	Titan's ionosphere. , 2014, , 376-418.		16
58	INCREASING POSITIVE ION NUMBER DENSITIES BELOW THE PEAK OF ION-ELECTRON PAIR PRODUCTION IN TITAN'S IONOSPHERE. Astrophysical Journal, 2014, 786, 69.	4.5	9
59	Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 2014, 227, 78-88.	2.5	60
60	Auroral electron precipitation and flux tube erosion in Titan's upper atmosphere. Icarus, 2013, 226, 186-204.	2.5	20
61	On the thermal electron balance in Titan's sunlit upper atmosphere. Icarus, 2013, 223, 234-251.	2.5	35
62	Aerosol growth in Titan's ionosphere. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2729-2734.	7.1	126
63	Currentâ€voltage relation for the Saturnian system. Journal of Geophysical Research: Space Physics, 2013, 118, 3214-3222.	2.4	16
64	PREDICTIONS OF ION PRODUCTION RATES AND ION NUMBER DENSITIES WITHIN THE DIAMAGNETIC CAVITY OF COMET 67P/CHURYUMOV-GERASIMENKO AT PERIHELION. Astrophysical Journal, 2013, 772, 33.	4.5	51
65	Characterizing the limitations to the coupling between Saturn's ionosphere and middle magnetosphere. Journal of Geophysical Research, 2012, 117, .	3.3	14
66	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
67	The CH ₄ structure in Titan's upper atmosphere revisited. Journal of Geophysical Research, 2012, 117, .	3.3	61
68	Diurnal variation of electron density in Saturn's ionosphere: Model comparisons with Saturn Electrostatic Discharge (SED) observations. Icarus, 2012, 221, 508-516.	2.5	12
69	Magnetosphereâ \in "atmosphere coupling at Saturn: 1 â \in " Response of thermosphere and ionosphere to steady state polar forcing. Icarus, 2012, 221, 481-494.	2.5	50
70	EnVision: taking the pulse of our twin planet. Experimental Astronomy, 2012, 33, 337-363.	3.7	23
71	Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 2012, 33, 753-791.	3.7	44
72	The Rosetta campaign to detect an exosphere at Lutetia. Planetary and Space Science, 2012, 66, 165-172.	1.7	9

#	Article	IF	CITATIONS
73	Suprathermal electron spectra in the Venus ionosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	21
74	Response of Saturn's auroral ionosphere to electron precipitation: Electron density, electron temperature, and electrical conductivity. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	50
7 5	Simultaneous Cassini VIMS and UVIS observations of Saturn's southern aurora: Comparing emissions from H, H ₂ and H ₃ ⁺ at a high spatial resolution. Geophysical Research Letters, 2011, 38, .	4.0	37
76	Separating and quantifying ionospheric responses to proton and electron precipitation over Svalbard. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	3
77	The implications of the H ₂ variability in Titan's exosphere. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	20
78	Energy deposition and primary chemical products in Titan's upper atmosphere. Icarus, 2011, 213, 233-251.	2.5	121
79	Aurora on Jupiter: A Magnetic Connection with the Sun and the Medicean Moons. Proceedings of the International Astronomical Union, 2010, 6, 71-79.	0.0	0
80	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
81	Ion transport in Titan's upper atmosphere. Journal of Geophysical Research, 2010, 115, .	3.3	38
82	Ionization sources in Titan's deep ionosphere. Journal of Geophysical Research, 2010, 115, .	3.3	44
83	Latitudinal variations in Saturn's ionosphere: Cassini measurements and model comparisons. Journal of Geophysical Research, 2010, 115, .	3.3	55
84	Response of Saturn's ionosphere to solar radiation: Testing parameterizations for thermal electron heating and secondary ionization processes. Planetary and Space Science, 2009, 57, 1699-1705.	1.7	25
85	TandEM: Titan and Enceladus mission. Experimental Astronomy, 2009, 23, 893-946.	3.7	77
86	Negative ion chemistry in Titan's upper atmosphere. Planetary and Space Science, 2009, 57, 1558-1572.	1.7	240
87	On the ionospheric structure of Titan. Planetary and Space Science, 2009, 57, 1821-1827.	1.7	119
88	On the amount of heavy molecular ions in Titan's ionosphere. Planetary and Space Science, 2009, 57, 1857-1865.	1.7	96
89	Diurnal variations of Titan's ionosphere. Journal of Geophysical Research, 2009, 114, .	3.3	69
90	Heliophysics: A Field With Its Own Universal Laws?: AGU Chapman Conference on Universal Heliophysical Processes; Savannah, Georgia, 10–14 November 2008. Eos, 2009, 90, 131.	0.1	0

#	Article	IF	CITATIONS
91	Solar primary and secondary ionization at Saturn. Journal of Geophysical Research, 2009, 114, .	3.3	48
92	Cross Sections and Reaction Rates for Comparative Planetary Aeronomy. Space Science Reviews, 2008, 139, 63-105.	8.1	74
93	Energy Deposition in Planetary Atmospheres by Charged Particles and Solar Photons. Space Science Reviews, 2008, 139, 3-62.	8.1	77
94	Spectral morphology of the Xâ€ray emission from Jupiter's aurorae. Journal of Geophysical Research, 2008, 113, .	3.3	75
95	Plasma temperatures in Saturn's ionosphere. Journal of Geophysical Research, 2008, 113, .	3.3	41
96	Cross Sections and Reaction Rates for Comparative Planetary Aeronomy. Space Sciences Series of ISSI, 2008, , 63-105.	0.0	2
97	Energy Deposition in Planetary Atmospheres by Charged Particles and Solar Photons. Space Sciences Series of ISSI, 2008, , 3-62.	0.0	3
98	On magnetospheric electron impact ionisation and dynamics in Titan's ram-side and polar ionosphere – a Cassini case study. Annales Geophysicae, 2007, 25, 2359-2369.	1.6	78
99	Electron temperature of Titan's sunlit ionosphere. Geophysical Research Letters, 2006, 33, .	4.0	61
100	First ground-based optical analysis of H _{ĵ²} Doppler profiles close to local noon in the cusp. Annales Geophysicae, 2006, 24, 2543-2552.	1.6	9
101	Proton aurora observed from the ground. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68, 1488-1501.	1.6	23
102	Observation of O ⁺ (^O) lines in electron aurora over Svalbard. Annales Geophysicae, 2004, 22, 2805-2817.	1.6	5
103	Observation of O+ 4P-4D0lines in proton aurora over Svalbard. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	5
104	Spectral imaging of proton aurora and twilight at Troms \tilde{A} , Norway. Journal of Geophysical Research, 2004, 109, .	3.3	18
105	Contribution of proton precipitation to space-based auroral FUV observations. Journal of Geophysical Research, 2004, 109, .	3.3	24
106	High resolution measurements and modeling of auroral hydrogen emission line profiles. Annales Geophysicae, 2003, 21, 1629-1643.	1.6	11
107	Electron and proton aurora observed spectroscopically in the far ultraviolet. Journal of Geophysical Research, 2002, 107, SIA 14-1.	3.3	28
108	Auroral processes in the solar system. Geophysical Monograph Series, 2002, , 55-76.	0.1	15

#	Article	IF	CITATIONS
109	Ionospheric electrical conductances produced by auroral proton precipitation. Journal of Geophysical Research, 2001, 106, 117-125.	3.3	77
110	Theoretical predictions of the effect of cusp and dayside precipitation on the polar ionosphere. Journal of Geophysical Research, 2001, 106, 28857-28865.	3.3	26
111	Emission of OI(630 nm) in proton aurora. Journal of Geophysical Research, 2001, 106, 141-148.	3.3	33
112	Response of the upper atmosphere to auroral protons. Journal of Geophysical Research, 2001, 106, 127-139.	3.3	43
113	The profile of the hydrogen $H\hat{l}^2$ emission line in proton aurora. Journal of Geophysical Research, 2001, 106, 23-31.	3.3	55
114	Introduction to special section: Proton precipitation into the atmosphere. Journal of Geophysical Research, 2001, 106, 1-6.	3.3	42
115	The Ionosphere of Titan: Ideal Diurnal and Nocturnal Cases. Icarus, 1999, 140, 92-105.	2.5	77
116	Magnetic mirroring in an incident proton beam. Journal of Geophysical Research, 1999, 104, 4447-4455.	3.3	30
117	Ionization by energetic protons in Thermosphere-Ionosphere Electrodynamics General Circulation Model. Journal of Geophysical Research, 1999, 104, 27973-27989.	3.3	30
118	Proton-electron precipitation effects on the electron production and density above EISCAT (Troms \tilde{A}) and ESR. Annales Geophysicae, 1998, 16, 1299-1307.	1.6	19
119	Proton transport model in the ionosphere. 2. Influence of magnetic mirroring and collisions on the angular redistribution in a proton beam. Annales Geophysicae, 1998, 16, 1308-1321.	1.6	27
120	Proton transport model in the ionosphere: 1. Multistream approach of the transport equations. Journal of Geophysical Research, 1997, 102, 22261-22272.	3.3	46
121	Quasiperiodic â ¹ /45-60 s fluctuations of VLF signals propagating in the Earth-ionosphere waveguide: A result of pulsating auroral particle precipitation?. Journal of Geophysical Research, 1997, 102, 347-361.	3.3	4
122	Enhanced incoherent scatter plasma lines. Annales Geophysicae, 1996, 14, 1462-1472.	1.6	13
123	Enhanced incoherent scatter plasma lines. Annales Geophysicae, 1996, 14, 1462.	1.6	8
124	First in-situ detection of the cometary ammonium ion NH 4 + 4 + 4 (protonated ammonia NH) Tj ETQq0 0 0 rgB Society, 0, , stw3370.	T /Overloc 4.4	ck 10 Tf 50 14 6
125	A collisional test particle model of electrons at a comet. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	1
126	ON THE IMPORTANCE OF THE CROSS-BODY APPROACH IN PLANETARY AERONOMY. , 0, , 239-248.		0