
Lorenzo Mentaschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3816737/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global Changes in Drought Conditions Under Different Levels of Warming. Geophysical Research Letters, 2018, 45, 3285-3296.	4.0	442
2	Sandy coastlines under threat of erosion. Nature Climate Change, 2020, 10, 260-263.	18.8	411
3	Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nature Communications, 2018, 9, 2360.	12.8	397
4	Global long-term observations of coastal erosion and accretion. Scientific Reports, 2018, 8, 12876.	3.3	373
5	Extreme heat waves under 1.5 °C and 2 °C global warming. Environmental Research Letters, 2018, 13 054006.	' 5.2	262
6	Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change. Science Advances, 2019, 5, eaaw5531.	10.3	239
7	Extreme sea levels on the rise along Europe's coasts. Earth's Future, 2017, 5, 304-323.	6.3	225
8	Robustness and uncertainties in global multivariate wind-wave climate projections. Nature Climate Change, 2019, 9, 711-718.	18.8	221
9	Climatic and socioeconomic controls of future coastal flood risk in Europe. Nature Climate Change, 2018, 8, 776-780.	18.8	182
10	Problems in RMSE-based wave model validations. Ocean Modelling, 2013, 72, 53-58.	2.4	176
11	Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Modelling, 2015, 90, 82-94.	2.4	161
12	Developments in large-scale coastal flood hazard mapping. Natural Hazards and Earth System Sciences, 2016, 16, 1841-1853.	3.6	144
13	Global changes of extreme coastal wave energy fluxes triggered by intensified teleconnection patterns. Geophysical Research Letters, 2017, 44, 2416-2426.	4.0	135
14	Wave energy resource assessment in the Mediterranean Sea on the basis of a 35-year hindcast. Energy, 2016, 94, 50-63.	8.8	134
15	Economic motivation for raising coastal flood defenses in Europe. Nature Communications, 2020, 11, 2119.	12.8	125
16	Increased economic drought impacts in Europe with anthropogenic warming. Nature Climate Change, 2021, 11, 485-491.	18.8	123
17	Extreme sea levels at different global warming levels. Nature Climate Change, 2021, 11, 746-751.	18.8	111
18	Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustainable Cities and Society, 2022, 77, 103564.	10.4	106

LORENZO MENTASCHI

#	Article	IF	CITATIONS
19	Increased Extreme Coastal Water Levels Due to the Combined Action of Storm Surges and Wind Waves. Geophysical Research Letters, 2019, 46, 4356-4364.	4.0	86
20	More meteorological events that drive compound coastal flooding are projected under climate change. Communications Earth & Environment, 2020, 1, 47.	6.8	78
21	Developing and validating a forecast/hindcast system for the Mediterranean Sea. Journal of Coastal Research, 2013, 165, 1551-1556.	0.3	63
22	Climate change impacts on critical international transportation assets of Caribbean Small Island Developing States (SIDS): the case of Jamaica and Saint Lucia. Regional Environmental Change, 2018, 18, 2211-2225.	2.9	60
23	A global ensemble of ocean wave climate projections from CMIP5-driven models. Scientific Data, 2020, 7, 105.	5.3	55
24	African heritage sites threatened as sea-level rise accelerates. Nature Climate Change, 2022, 12, 256-262.	18.8	53
25	The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis. Hydrology and Earth System Sciences, 2016, 20, 3527-3547.	4.9	48
26	Understanding epistemic uncertainty in large-scale coastal flood risk assessment for present and future climates. Natural Hazards and Earth System Sciences, 2018, 18, 2127-2142.	3.6	46
27	Trends and variability of ocean waves under RCP8.5 emission scenario in the Mediterranean Sea. Ocean Dynamics, 2021, 71, 97-117.	2.2	42
28	Towards robust pan-European storm surge forecasting. Ocean Modelling, 2019, 133, 129-144.	2.4	38
29	Comparing different extreme wave analysis models for wave climate assessment along the Italian coast. Coastal Engineering, 2015, 100, 37-47.	4.0	36
30	Uncertainty and Bias in Global to Regional Scale Assessments of Current and Future Coastal Flood Risk. Earth's Future, 2021, 9, e2020EF001882.	6.3	35
31	Global long-term mapping of surface temperature shows intensified intra-city urban heat island extremes. Global Environmental Change, 2022, 72, 102441.	7.8	34
32	Global-scale changes to extreme ocean wave events due to anthropogenic warming. Environmental Research Letters, 2021, 16, 074056.	5.2	29
33	Diverging hydrological drought traits over Europe with global warming. Hydrology and Earth System Sciences, 2020, 24, 5919-5935.	4.9	21
34	Time clustering of wave storms in the Mediterranean Sea. Natural Hazards and Earth System Sciences, 2017, 17, 505-514.	3.6	19
35	A global ensemble of ocean wave climate statistics from contemporary wave reanalysis and hindcasts. Scientific Data, 2022, 9, .	5.3	16
36	Reply to: Sandy beaches can survive sea-level rise. Nature Climate Change, 2020, 10, 996-997.	18.8	15

LORENZO MENTASCHI

#	Article	IF	CITATIONS
37	Independence of Future Changes of River Runoff in Europe from the Pathway to Global Warming. Climate, 2020, 8, 22.	2.8	12
38	Parameterization of unresolved obstacles in wave modelling: A source term approach. Ocean Modelling, 2015, 96, 93-102.	2.4	11
39	European Copernicus Services to Inform on Sea-Level Rise Adaptation: Current Status and Perspectives. Frontiers in Marine Science, 2021, 8, .	2.5	11
40	A Pan-European high resolution storm surge hindcast. Environment International, 2020, 135, 105367.	10.0	10
41	Parameterizing unresolved obstacles with source terms in wave modeling: A real-world application. Ocean Modelling, 2018, 126, 77-84.	2.4	9
42	Drivers of future fluvial flood risk change for residential buildings in Europe. Global Environmental Change, 2022, 76, 102559.	7.8	9
43	METOC-driven vessel interdiction system (MVIS): Supporting decision making in Command and Control (C2) systems. , 2015, , .		8
44	Assessment of global wave models on regular and unstructured grids using the Unresolved Obstacles Source Term. Ocean Dynamics, 2020, 70, 1475-1483.	2.2	8
45	alphaBetaLab: Automatic estimation of subscale transparencies for the Unresolved Obstacles Source Term in ocean wave modelling. SoftwareX, 2019, 9, 1-6.	2.6	5
46	Evaluating third generation wave spectral models performances in coastal areas. An application to Eastern Liguria. , 2015, , .		1
47	A preliminary wave energy exploitation assessment in the Northern Thyrrenian sea. , 2015, , .		Ο