Sungwon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3814509/publications.pdf

Version: 2024-02-01

27 7,070 15 25
papers citations h-index g-index

27 27 27 27 11372

27 27 27 11372 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science, 2008, 319, 1229-1232.	12.6	4,504
2	Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nature Nanotechnology, 2017, 12, 907-913.	31.5	820
3	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.	31.5	680
4	Enhancing the Performance of Stretchable Conductors for Eâ€Textiles by Controlled Ink Permeation. Advanced Materials, 2017, 29, 1605848.	21.0	223
5	Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties. Journal of Materials Chemistry, 2009, 19, 743-748.	6.7	124
6	A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature Communications, 2014, 5, 5898.	12.8	120
7	Functionalization of graphene layers and advancements in device applications. Carbon, 2019, 152, 954-985.	10.3	110
8	A photonic sintering derived Ag flake/nanoparticle-based highly sensitive stretchable strain sensor for human motion monitoring. Nanoscale, 2018, 10, 7890-7897.	5.6	108
9	Breathable Nanomesh Humidity Sensor for Real-Time Skin Humidity Monitoring. ACS Applied Materials & Lamp; Interfaces, 2019, 11, 44758-44763.	8.0	108
10	Highâ€Frequency, Conformable Organic Amplifiers. Advanced Materials, 2016, 28, 3298-3304.	21.0	49
11	Enhancing the conductivity of PEDOT:PSS films for biomedical applications via hydrothermal treatment. Biosensors and Bioelectronics, 2021, 171, 112717.	10.1	37
12	Ultrathin silver telluride nanowire films and gold nanosheet electrodes for a flexible resistive switching device. Nanoscale, 2018, 10, 5424-5430.	5.6	22
13	Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications. Journal of Colloid and Interface Science, 2020, 558, 9-20.	9.4	20
14	Recent advances in graphene monolayers growth and their biological applications: A review. Advances in Colloid and Interface Science, 2020, 283, 102225.	14.7	20
15	Extremely flexible and mechanically durable planar supercapacitors: High energy density and low-cost power source for E-skin electronics. Nano Energy, 2020, 78, 105356.	16.0	18
16	All-Organic, Solution-Processed, Extremely Conformal, Mechanically Biocompatible, and Breathable Epidermal Electrodes. ACS Applied Materials & Epidermal Electrodes. ACS Applied Materials & Enterfaces, 2021, 13, 5660-5667.	8.0	18
17	Multi-deformable piezoelectric energy nano-generator with high conversion efficiency for subtle body movements. Nano Energy, 2022, 97, 107223.	16.0	16
18	Accurate, hysteresis-free temperature sensor for health monitoring using a magnetic sensor and pristine polymer. RSC Advances, 2019, 9, 7885-7889.	3.6	15

SUNGWON LEE

#	Article	IF	CITATION
19	An Allâ€Nanofiberâ€Based Substrateâ€Less, Extremely Conformal, and Breathable Organic Field Effect Transistor for Biomedical Applications. Advanced Functional Materials, 2022, 32, .	14.9	14
20	A Hierarchical Metal Nanowire Network Structure for Durable, Cost-Effective, Stretchable, and Breathable Electronics. ACS Applied Materials & Samp; Interfaces, 2021, 13, 60425-60432.	8.0	12
21	Multifunctional Metalâ€oxide Integrated Monolayer Graphene Heterostructures for Planar, Flexible, and Skinâ€mountable Device Applications. Nano Energy, 2021, 88, 106274.	16.0	11
22	Predominantly enhanced catalytic activities of surface protected ZnO nanorods integrated stainless-steel mesh structures: A synergistic impact on oxygen evolution reaction process. Chemical Engineering Journal, 2022, 429, 132360.	12.7	9
23	Defects-free single-crystalline zinc oxide nanostructures for efficient photoelectrochemical solar hydrogen generation. International Journal of Hydrogen Energy, 2020, 45, 27279-27290.	7.1	8
24	Highly Reliable Magnetic-Based Pressure Sensor Utilizing Simple Microstructured PDMS: Mechanical and Design Analysis via Finite Element Analysis. IEEE Sensors Journal, 2021, 21, 16560-16567.	4.7	2
25	User-friendly methodology for chemical vapor deposition –grown graphene-layersÂtransfer: Design and implementation. Materials Today Chemistry, 2021, 21, 100546.	3 . 5	2
26	Larger, flexible, and skin-mountable energy devices with graphene single layers for integratable, wearable, and health monitoring systems. Materials Today Chemistry, 2022, 23, 100764.	3.5	0
27	Impact of shock waves on the physical and chemical properties of aligned zinc oxide structures grown over metal-sheets. Materials Today Chemistry, 2022, 24, 100921.	3.5	0