List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3813839/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deep Brain Stimulation for Parkinson Disease. Archives of Neurology, 2011, 68, 165.	4.5	776
2	Parkinson's Disease and Residential Exposure to Maneb and Paraquat From Agricultural Applications in the Central Valley of California. American Journal of Epidemiology, 2009, 169, 919-926.	3.4	482
3	Parkinson's disease risk from ambient exposure to pesticides. European Journal of Epidemiology, 2011, 26, 547-555.	5.7	276
4	Clinical characteristics in early Parkinson's disease in a central California populationâ€based study. Movement Disorders, 2005, 20, 1133-1142.	3.9	214
5	Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proceedings of the United States of America, 2013, 110, 636-641.	7.1	170
6	Dopamine Transporter Genetic Variants and Pesticides in Parkinson's Disease. Environmental Health Perspectives, 2009, 117, 964-969.	6.0	153
7	Prenatal ontogeny of the epidermal growth factor receptor and its ligand, transforming growth factor alpha, in the rat brain. , 1997, 380, 243-261.		148
8	A Novel "Molecular Tweezer―Inhibitor of α-Synuclein Neurotoxicity in Vitro and in Vivo. Neurotherapeutics, 2012, 9, 464-476.	4.4	148
9	Paraoxonase 1, Agricultural Organophosphate Exposure, and Parkinson Disease. Epidemiology, 2010, 21, 87-94.	2.7	135
10	Inhibitory effects of pesticides on proteasome activity: Implication in Parkinson's disease. Neurobiology of Disease, 2006, 23, 198-205.	4.4	134
11	Parkinson's disease is associated with DNA methylation levels in human blood and saliva. Genome Medicine, 2017, 9, 76.	8.2	122
12	Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease. Neurology, 2014, 82, 419-426.	1.1	116
13	Bis-choline tetrathiomolybdate in patients with Wilson's disease: an open-label, multicentre, phase 2 study. The Lancet Gastroenterology and Hepatology, 2017, 2, 869-876.	8.1	110
14	α-Synuclein Genetic Variants Predict Faster Motor Symptom Progression in Idiopathic Parkinson Disease. PLoS ONE, 2012, 7, e36199.	2.5	107
15	Of Pesticides and Men: a California Story of Genes and Environment in Parkinson's Disease. Current Environmental Health Reports, 2016, 3, 40-52.	6.7	103
16	The association between ambient exposure to organophosphates and Parkinson's disease risk. Occupational and Environmental Medicine, 2014, 71, 275-281.	2.8	87
17	α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy. Acta Neuropathologica, 2021, 142, 495-511.	7.7	80
18	Association of Polygenic Risk Score With Cognitive Decline and Motor Progression in Parkinson Disease. JAMA Neurology, 2018, 75, 360.	9.0	79

#	Article	IF	CITATIONS
19	Ziram Causes Dopaminergic Cell Damage by Inhibiting E1 Ligase of the Proteasome. Journal of Biological Chemistry, 2008, 283, 34696-34703.	3.4	77
20	Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Molecular Neurodegeneration, 2018, 13, 41.	10.8	77
21	The association between lifestyle factors and Parkinson's disease progression and mortality. Movement Disorders, 2019, 34, 58-66.	3.9	77
22	Wilson Disease. Neurologic Clinics, 2020, 38, 417-432.	1.8	76
23	Household organophosphorus pesticide use and Parkinson's disease. International Journal of Epidemiology, 2013, 42, 1476-1485.	1.9	74
24	Pooled analysis of iron-related genes in Parkinson's disease: Association with transferrin. Neurobiology of Disease, 2014, 62, 172-178.	4.4	74
25	The Rationale Driving the Evolution of Deep Brain Stimulation to Constant-Current Devices. Neuromodulation, 2015, 18, 85-89.	0.8	73
26	Occupational pesticide use and Parkinson's disease in the Parkinson Environment Gene (PEG) study. Environment International, 2017, 107, 266-273.	10.0	69
27	Involvement of OSP/claudin-11 in oligodendrocyte membrane interactions: Role in biology and disease. Journal of Neuroscience Research, 2000, 59, 706-711.	2.9	65
28	Neurotoxicity of the Parkinson Disease-Associated Pesticide Ziram Is Synuclein-Dependent in Zebrafish Embryos. Environmental Health Perspectives, 2016, 124, 1766-1775.	6.0	64
29	Mechanisms of rotenone-induced proteasome inhibition. NeuroToxicology, 2010, 31, 367-372.	3.0	63
30	α-Synuclein Gene May Interact with Environmental Factors in Increasing Risk of Parkinson's Disease. Neuroepidemiology, 2010, 35, 191-195.	2.3	61
31	Organophosphate pesticide exposure and differential genome-wide DNA methylation. Science of the Total Environment, 2018, 645, 1135-1143.	8.0	56
32	APOE, MAPT, and COMT and Parkinson's Disease Susceptibility and Cognitive Symptom Progression. Journal of Parkinson's Disease, 2016, 6, 349-359.	2.8	53
33	Organophosphate Pesticide Exposures, Nitric Oxide Synthase Gene Variants, and Gene–Pesticide Interactions in a Case–Control Study of Parkinson's Disease, California (USA). Environmental Health Perspectives, 2016, 124, 570-577.	6.0	52
34	Functional paraoxonase 1 variants modify the risk of Parkinson's disease due to organophosphate exposure. Environment International, 2013, 56, 42-47.	10.0	50
35	Pesticides that inhibit the ubiquitin–proteasome system: Effect measure modification by genetic variation in SKP1 in Parkinson׳s disease. Environmental Research, 2013, 126, 1-8.	7.5	44
36	Organophosphate pesticides and PON1 L55M in Parkinson's disease progression. Environment International, 2017, 107, 75-81.	10.0	43

#	Article	IF	CITATIONS
37	Clinical progression in Parkinson's disease with features of REM sleep behavior disorder: A population-based longitudinal study. Parkinsonism and Related Disorders, 2019, 62, 105-111.	2.2	39
38	Longitudinal Epigenome-Wide Methylation Study of Cognitive Decline and Motor Progression in Parkinson's Disease. Journal of Parkinson's Disease, 2019, 9, 389-400.	2.8	37
39	Job Exposure Matrix (JEM)-Derived Estimates of Lifetime Occupational Pesticide Exposure and the Risk of Parkinson's Disease. Archives of Environmental and Occupational Health, 2014, 69, 241-251.	1.4	35
40	Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson's disease. Environmental Research, 2015, 143, 98-106.	7.5	34
41	Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease. Journal of the Neurological Sciences, 2016, 370, 100-106.	0.6	34
42	Dopamine receptors and BDNF -haplotypes predict dyskinesia in Parkinson's disease. Parkinsonism and Related Disorders, 2018, 47, 39-44.	2.2	33
43	Editor's Highlight: Base Excision Repair Variants and Pesticide Exposure Increase Parkinson's Disease Risk. Toxicological Sciences, 2017, 158, 188-198.	3.1	31
44	Calmodulin Kinase II in Pure Cultured Astrocytes. Journal of Neurochemistry, 1988, 50, 45-49.	3.9	29
45	Increased Menopausal Age Reduces the Risk of Parkinson's Disease: A Mendelian Randomization Approach. Movement Disorders, 2021, 36, 2264-2272.	3.9	28
46	Treatment of psychosis in Parkinson's disease and dementia with Lewy Bodies: A review. Parkinsonism and Related Disorders, 2020, 75, 55-62.	2.2	28
47	Air Pollution and the Risk of Parkinson's Disease: A Review. Movement Disorders, 2022, 37, 894-904.	3.9	28
48	Genomeâ€wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy. Movement Disorders, 2019, 34, 1049-1059.	3.9	24
49	Studying the Pathophysiology of Parkinson's Disease Using Zebrafish. Biomedicines, 2020, 8, 197.	3.2	24
50	An epigenome-wide association study of ambient pyrethroid pesticide exposures in California's central valley. International Journal of Hygiene and Environmental Health, 2020, 229, 113569.	4.3	17
51	Cognitive Impairment and Mortality in a Population-Based Parkinson's Disease Cohort. Journal of Parkinson's Disease, 2018, 8, 353-362.	2.8	16
52	Platelet mitochondrial activity and pesticide exposure in early Parkinson's disease. Movement Disorders, 2015, 30, 862-866.	3.9	15
53	Diesel Exhaust Extract Exposure Induces Neuronal Toxicity by Disrupting Autophagy. Toxicological Sciences, 2020, 176, 193-202.	3.1	15
54	A novel transgenic zebrafish line allows for in vivo quantification of autophagic activity in neurons. Autophagy, 2019, 15, 1322-1332.	9.1	14

#	Article	IF	CITATIONS
55	Accelerated hematopoietic mitotic aging measured by DNA methylation, blood cell lineage, and Parkinson's disease. BMC Genomics, 2021, 22, 696.	2.8	14
56	DNA methylation biomarker for cumulative lead exposure is associated with Parkinson's disease. Clinical Epigenetics, 2021, 13, 59.	4.1	13
57	Ambient Pyrethroid Pesticide Exposures in Adult Life and Depression in Older Residents of California's Central Valley. Environmental Epidemiology, 2020, 4, e123.	3.0	12
58	Genetic variants in nicotinic receptors and smoking cessation in Parkinson's disease. Parkinsonism and Related Disorders, 2019, 62, 57-61.	2.2	10
59	NFE2L2, PPARGC1α, and pesticides and Parkinson's disease risk and progression. Mechanisms of Ageing and Development, 2018, 173, 1-8.	4.6	8
60	Genetic risk scores and hallucinations in patients with Parkinson disease. Neurology: Genetics, 2020, 6, e492.	1.9	7
61	Diesel exhaust exposure alters the expression of networks implicated in neurodegeneration in zebrafish brains. Cell Biology and Toxicology, 2021, , 1.	5.3	6
62	Neuropsychological outcomes from deep brain stimulation—stimulation versus micro-lesion. Annals of Translational Medicine, 2017, 5, 217-217.	1.7	5
63	Lack of Association Between GBA Mutations and Motor Complications in European and American Parkinson's Disease Cohorts. Journal of Parkinson's Disease, 2021, 11, 1569-1578.	2.8	5
64	Stochastic Epigenetic Mutations Influence Parkinson's Disease Risk, Progression, and Mortality. Journal of Parkinson's Disease, 2022, 12, 545-556.	2.8	5
65	DNA methylation-based surrogates of plasma proteins are associated with Parkinson's disease risk. Journal of the Neurological Sciences, 2021, 431, 120046.	0.6	3
66	Adult onset POLR3A leukodystrophy presenting with parkinsonism treated with pallidal deep brain stimulation. Parkinsonism and Related Disorders, 2021, 85, 23-25.	2.2	2
67	Erratum to "Increased Menopausal Age Reduces the Risk of Parkinson's Disease: A Mendelian Approach― Movement Disorders, 2022, 37, 1282-1283.	3.9	1
68	Treatment of Psychosis in Parkinson's disease and sudden death. Parkinsonism and Related Disorders, 2020, 79, 127.	2.2	0
69	Pesticide Exposure, Systems Biology, and Parkinson's disease. ISEE Conference Abstracts, 2021, 2021, .	0.0	0