Scott D Pegan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3812247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16119-16124.	7.1	407
2	Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nature Neuroscience, 2005, 8, 279-287.	14.8	273
3	Characterization and Noncovalent Inhibition of the Deubiquitinase and delSGylase Activity of SARS-CoV-2 Papain-Like Protease. ACS Infectious Diseases, 2020, 6, 2099-2109.	3.8	239
4	ISG15: It's Complicated. Journal of Molecular Biology, 2019, 431, 4203-4216.	4.2	97
5	Structural Insights into the Interaction of Coronavirus Papain-Like Proteases and Interferon-Stimulated Gene Product 15 from Different Species. Journal of Molecular Biology, 2017, 429, 1661-1683.	4.2	88
6	Synthesis of Casimiroin and Optimization of Its Quinone Reductase 2 and Aromatase Inhibitory Activities. Journal of Medicinal Chemistry, 2009, 52, 1873-1884.	6.4	74
7	Blocking Myristoylation of Src Inhibits Its Kinase Activity and Suppresses Prostate Cancer Progression. Cancer Research, 2017, 77, 6950-6962.	0.9	65
8	Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease. Cell Reports, 2017, 20, 2396-2407.	6.4	64
9	Structural Analysis of a Viral Ovarian Tumor Domain Protease from the Crimean-Congo Hemorrhagic Fever Virus in Complex with Covalently Bonded Ubiquitin. Journal of Virology, 2011, 85, 3621-3630.	3.4	60
10	An Antimicrobial Guanidine-Bearing Sesterterpene from the Cultured Cyanobacterium Scytonema sp Journal of Natural Products, 2009, 72, 2043-2045.	3.0	57
11	How ISG15 combats viral infection. Virus Research, 2020, 286, 198036.	2.2	51
12	Diversity of Ubiquitin and ISG15 Specificity among Nairoviruses' Viral Ovarian Tumor Domain Proteases. Journal of Virology, 2013, 87, 3815-3827.	3.4	44
13	Development and validation of a yeast high-throughput screen for inhibitors of Aβ42 oligomerization. DMM Disease Models and Mechanisms, 2011, 4, 822-831.	2.4	43
14	Structural Basis for Catalysis of a Tetrameric Class IIa Fructose 1,6-Bisphosphate Aldolase from Mycobacterium tuberculosis. Journal of Molecular Biology, 2009, 386, 1038-1053.	4.2	38
15	Xâ€ray structural studies of quinone reductase 2 nanomolar range inhibitors. Protein Science, 2011, 20, 1182-1195.	7.6	38
16	Assessment of Inhibitors of Pathogenic Crimean-Congo Hemorrhagic Fever Virus Strains Using Virus-Like Particles. PLoS Neglected Tropical Diseases, 2015, 9, e0004259.	3.0	37
17	Single-dose replicon particle vaccine provides complete protection against Crimean-Congo hemorrhagic fever virus in mice. Emerging Microbes and Infections, 2019, 8, 575-578.	6.5	36
18	Structural Insights of Stereospecific Inhibition of Human Acetylcholinesterase by VX and Subsequent Reactivation by HI-6. Chemical Research in Toxicology, 2018, 31, 1405-1417.	3.3	35

SCOTT D PEGAN

#	Article	IF	CITATIONS
19	Engineering the Organophosphorus Acid Anhydrolase Enzyme for Increased Catalytic Efficiency and Broadened Stereospecificity on Russian VX. Biochemistry, 2015, 54, 6423-6433.	2.5	33
20	Isolation and evaluation of kaempferol glycosides from the fern Neocheiropteris palmatopedata. Phytochemistry, 2010, 71, 641-647.	2.9	32
21	Design and synthesis of 2-pyridones as novel inhibitors of the Bacillus anthracis enoyl-ACP reductase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3565-3569.	2.2	31
22	Structurally Guided Removal of DeISGylase Biochemical Activity from Papain-Like Protease Originating from Middle East Respiratory Syndrome Coronavirus. Journal of Virology, 2017, 91, .	3.4	31
23	Biochemical and Structural Insights into the Preference of Nairoviral DeISGylases for Interferon-Stimulated Gene Product 15 Originating from Certain Species. Journal of Virology, 2016, 90, 8314-8327.	3.4	28
24	Probing the impact of nairovirus genomic diversity on viral ovarian tumor domain protease (vOTU) structure and deubiquitinase activity. PLoS Pathogens, 2019, 15, e1007515.	4.7	26
25	Targeting Mitochondrial Proline Dehydrogenase with a Suicide Inhibitor to Exploit Synthetic Lethal Interactions with p53 Upregulation and Glutaminase Inhibition. Molecular Cancer Therapeutics, 2019, 18, 1374-1385.	4.1	26
26	Natural product leads for drug discovery: Isolation, synthesis and biological evaluation of 6-cyano-5-methoxyindolo[2,3-a]carbazole based ligands as antibacterial agents. Bioorganic and Medicinal Chemistry, 2009, 17, 7126-7130.	3.0	23
27	The vOTU domain of highly-pathogenic porcine reproductive and respiratory syndrome virus displays a differential substrate preference. Virology, 2014, 454-455, 247-253.	2.4	23
28	A Universal, Fully Automated High Throughput Screening Assay for Pyrophosphate and Phosphate Release from Enzymatic Reactions. Combinatorial Chemistry and High Throughput Screening, 2010, 13, 27-38.	1.1	21
29	The SARS-CoV-2 SSHHPS Recognized by the Papain-like Protease. ACS Infectious Diseases, 2021, 7, 1483-1502.	3.8	19
30	Stable Occupancy of the Crimean-Congo Hemorrhagic Fever Virus-Encoded Deubiquitinase Blocks Viral Infection. MBio, 2019, 10, .	4.1	12
31	Losartan Inhibits SARS-CoV-2 Replication in Vitro. Journal of Pharmacy and Pharmaceutical Sciences, 2021, 24, 390-399.	2.1	12
32	Structure of interferon-stimulated gene product 15 (ISG15) from the bat species <i>Myotis davidii</i> and the impact of interdomain ISG15 interactions on viral protein engagement. Acta Crystallographica Section D: Structural Biology, 2019, 75, 21-31.	2.3	11
33	Insights into the Porcine Reproductive and Respiratory Syndrome Virus Viral Ovarian Tumor Domain Protease Specificity for Ubiquitin and Interferon Stimulated Gene Product 15. ACS Infectious Diseases, 2018, 4, 1316-1326.	3.8	10
34	Polyphenols as Potential Inhibitors of SARS-CoV-2 RNA Dependent RNA Polymerase (RdRp). Molecules, 2021, 26, 7438.	3.8	10
35	Determining the molecular drivers of species-specific interferon-stimulated gene product 15 interactions with nairovirus ovarian tumor domain proteases. PLoS ONE, 2019, 14, e0226415.	2.5	9
36	Synthesis, Cytotoxicity, and Genotoxicity of 10-Aza-9-oxakalkitoxin, an <i>N</i> , <i>N</i> , <i>O</i> -Trisubstituted Hydroxylamine Analog, or Hydroxalog, of a Marine Natural Product. Journal of the American Chemical Society, 2020, 142, 9147-9151.	13.7	9

SCOTT D PEGAN

#	Article	IF	CITATIONS
37	Polyphenols as alternative treatments of COVID-19. Computational and Structural Biotechnology Journal, 2021, 19, 5371-5380.	4.1	8
38	Structural and functional characterization ofMycobacterium tuberculosistriosephosphate isomerase. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 1017-1022.	2.5	7
39	The structural and biochemical impacts of monomerizing human acetylcholinesterase. Protein Science, 2019, 28, 1106-1114.	7.6	7
40	Synthesis and Molecular Properties of Nerve Agent Reactivator HLö-7 Dimethanesulfonate. ACS Medicinal Chemistry Letters, 2019, 10, 761-766.	2.8	6
41	Structural insights into the interaction of papain-like protease 2 from the alphacoronavirus porcine epidemic diarrhea virus and ubiquitin. Acta Crystallographica Section D: Structural Biology, 2021, 77, 943-953.	2.3	6
42	Exploring Noncovalent Protease Inhibitors for the Treatment of Severe Acute Respiratory Syndrome and Severe Acute Respiratory Syndrome-Like Coronaviruses. ACS Infectious Diseases, 2022, 8, 596-611.	3.8	6
43	Structural and Biochemical Insights into the Inhibition of Human Acetylcholinesterase by C-Series Nerve Agents and Subsequent Reactivation by HI-6. Chemical Research in Toxicology, 2021, 34, 804-816.	3.3	5
44	Inherent dynamics within the Crimean-Congo Hemorrhagic fever virus protease are localized to the same region as substrate interactions. Protein Science, 2015, 24, 651-660.	7.6	3
45	Flipping the substrate preference of Hazara virus ovarian tumour domain protease through structure-based mutagenesis. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1114-1123.	2.3	3
46	Structural and mechanistic analysis oftrans-3-chloroacrylic acid dehalogenase activity. Acta Crystallographica Section D: Biological Crystallography, 2008, 64, 1277-1282.	2.5	2
47	The Structure and Immune Regulatory Implications of the Ubiquitin-Like Tandem Domain Within an Avian 2'-5' Oligoadenylate Synthetase-Like Protein. Frontiers in Immunology, 2021, 12, 794664.	4.8	1