Luis Rivas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3812152/publications.pdf

Version: 2024-02-01

66343 102487 4,935 117 42 66 citations h-index g-index papers 121 121 121 6040 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Animal antimicrobial peptides: An overview. Biopolymers, 1998, 47, 415-433.	2.4	518
2	Temporins, Small Antimicrobial Peptides with Leishmanicidal Activity. Journal of Biological Chemistry, 2005, 280, 984-990.	3.4	169
3	Dendritic Cell (DC)-specific Intercellular Adhesion Molecule 3 (ICAM-3)-grabbing Nonintegrin (DC-SIGN,) Tj ETQq1 Biological Chemistry, 2002, 277, 36766-36769.		l 4 rgBT /C <mark>ve</mark> 146
4	Impaired Virulence and In Vivo Fitness of Colistin-Resistant Acinetobacter baumannii. Journal of Infectious Diseases, 2011, 203, 545-548.	4.0	138
5	N-Terminal Fatty Acid Substitution Increases the Leishmanicidal Activity of CA(1-7)M(2-9), a Cecropin-Melittin Hybrid Peptide. Antimicrobial Agents and Chemotherapy, 2001, 45, 2441-2449.	3.2	117
6	Human antimicrobial peptide histatin 5 is a cell―penetrating peptide targeting mitochondrial ATP synthesis in <i>Leishmania</i> . FASEB Journal, 2008, 22, 1817-1828.	0.5	116
7	The cost of resistance to colistin in <i>Acinetobacter baumannii</i> : a proteomic perspective. Proteomics, 2009, 9, 1632-1645.	2.2	112
8	New Benzophenone-Derived Bisphosphonium Salts as Leishmanicidal Leads Targeting Mitochondria through Inhibition of Respiratory Complex II. Journal of Medicinal Chemistry, 2010, 53, 1788-1798.	6.4	112
9	Miltefosine (Hexadecylphosphocholine) Inhibits Cytochrome c Oxidase in Leishmania donovani Promastigotes. Antimicrobial Agents and Chemotherapy, 2007, 51, 1327-1332.	3.2	108
10	Recombinant vaccinia viruses expressing GP46/M-2 protect against Leishmania infection. Infection and Immunity, 1993, 61, 3351-3359.	2.2	100
11	Antimicrobial Peptide Action on Parasites. Current Drug Targets, 2012, 13, 1138-1147.	2.1	97
12	The plasma membrane of Leishmania donovani promastigotes is the main target for CA(1–8)M(1–18), a synthetic cecropin A–melittin hybrid peptide. Biochemical Journal, 1998, 330, 453-460.	3.7	96
13	Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis. PLoS Pathogens, 2015, 11, e1004684.	4.7	96
14	Effect of Naturall- tod-Amino Acid Conversion on the Organization, Membrane Binding, and Biological Function of the Antimicrobial Peptides Bombinins Hâ€. Biochemistry, 2006, 45, 4266-4276.	2.5	92
15	Developmental Life Cycle of Leishmania?Cultivation and Characterization of Cultured Extracellular Amastigotes. Journal of Eukaryotic Microbiology, 1993, 40, 213-223.	1.7	90
16	Amphibian antimicrobial peptides and Protozoa: Lessons from parasites. Biochimica Et Biophysica Acta - Biomembranes, 2009, 1788, 1570-1581.	2.6	89
17	Regulated Expression of the Pathogen Receptor Dendritic Cell-specific Intercellular Adhesion Molecule 3 (ICAM-3)-grabbing Nonintegrin in THP-1 Human Leukemic Cells, Monocytes, and Macrophages. Journal of Biological Chemistry, 2004, 279, 25680-25688.	3.4	88
18	Activity of Cecropin A-Melittin Hybrid Peptides against Colistin-Resistant Clinical Strains of Acinetobacter baumannii: Molecular Basis for the Differential Mechanisms of Action. Antimicrobial Agents and Chemotherapy, 2006, 50, 1251-1256.	3.2	84

#	Article	IF	Citations
19	Tafenoquine, an Antiplasmodial 8-Aminoquinoline, Targets <i>Leishmania</i> Respiratory Complex III and Induces Apoptosis. Antimicrobial Agents and Chemotherapy, 2010, 54, 5344-5351.	3.2	82
20	The biosynthesis, processing, and immunolocalization of Leishmania pifanoi amastigote cysteine proteinases. Molecular and Biochemical Parasitology, 1994, 68, 119-132.	1.1	69
21	The Dendritic Cell Receptor DC-SIGN Discriminates among Species and Life Cycle Forms ofLeishmania. Journal of Immunology, 2004, 172, 1186-1190.	0.8	68
22	The 8-Aminoquinoline Analogue Sitamaquine Causes Oxidative Stress in Leishmania donovani Promastigotes by Targeting Succinate Dehydrogenase. Antimicrobial Agents and Chemotherapy, 2011, 55, 4204-4210.	3.2	65
23	Multi-analytical platform metabolomic approach to study miltefosine mechanism of action and resistance in Leishmania. Analytical and Bioanalytical Chemistry, 2014, 406, 3459-3476.	3.7	64
24	Safety and Efficacy of Antimicrobial Peptides against Naturally Acquired Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2004, 48, 641-643.	3.2	63
25	A cutaneous gene therapy approach to treat infection through keratinocyteâ€ŧargeted overexpression of antimicrobial peptides. FASEB Journal, 2004, 18, 1931-1933.	0.5	62
26	Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 20-27.	3.4	58
27	Identification of new leishmanicidal peptide lead structures by automated real-time monitoring of changes in intracellular ATP. Biochemical Journal, 2003, 375, 221-230.	3.7	56
28	Activities of Polymyxin B and Cecropin A-Melittin Peptide $CA(1-8)M(1-18)$ against a Multiresistant Strain of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2002, 46, 875-878.	3.2	55
29	Fungus-Elicited Metabolites from Plants as an Enriched Source for New Leishmanicidal Agents: Antifungal Phenyl-Phenalenone Phytoalexins from the Banana Plant (Musa acuminata) Target Mitochondria of Leishmania donovani Promastigotes. Antimicrobial Agents and Chemotherapy, 2004, 48, 1534-1540.	3.2	55
30	Enterocin AS-48 as Evidence for the Use of Bacteriocins as New Leishmanicidal Agents. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	55
31	Role of Positional Hydrophobicity in the Leishmanicidal Activity of Magainin 2. Antimicrobial Agents and Chemotherapy, 2004, 48, 2980-2986.	3.2	54
32	Release of Lipid Vesicle Contents by an Antibacterial Cecropin Aâ^Melittin Hybrid Peptide. Biochemistry, 1996, 35, 9892-9899.	2.5	50
33	Studies on the antimicrobial activity of cecropin A-melittin hybrid peptides in colistin-resistant clinical isolates of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2006, 58, 95-100.	3.0	50
34	Topographical distribution of ocular surface cells by the use of impression cytology. Acta Ophthalmologica, 1991, 69, 371-376.	1.1	50
35	<scp>CE</scp> â€ <scp>ESI</scp> â€ <scp>MS</scp> metabolic fingerprinting of <i><scp>L</scp>eishmania</i> resistance to antimony treatment. Electrophoresis, 2012, 33, 1901-1910.	2.4	50
36	Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Neglected Tropical Diseases, 2016, 10, e0005171.	3.0	48

#	Article	IF	CITATIONS
37	Therapeutic Index of Gramicidin S is Strongly Modulated by <scp>d</scp> -Phenylalanine Analogues at the Î ² -Turn. Journal of Medicinal Chemistry, 2009, 52, 664-674.	6.4	46
38	Synthesis, biological assessment and molecular modeling of new dihydroquinoline-3-carboxamides and dihydroquinoline-3-carbohydrazide derivatives as cholinesterase inhibitors, and Ca channel antagonists. European Journal of Medicinal Chemistry, 2011, 46, 1-10.	5 . 5	46
39	Cyanobacteria and Eukaryotic Microalgae as Emerging Sources of Antibacterial Peptides. Molecules, 2020, 25, 5804.	3.8	46
40	Characterization of the Leishmanicidal Activity of Antimicrobial Peptides. Methods in Molecular Biology, 2010, 618, 393-420.	0.9	45
41	Leishmania donovani: Thionins, plant antimicrobial peptides with leishmanicidal activity. Experimental Parasitology, 2009, 122, 247-249.	1.2	44
42	In Vivo Monitoring of Intracellular ATP Levels in Leishmania donovani Promastigotes as a Rapid Method To Screen Drugs Targeting Bioenergetic Metabolism. Antimicrobial Agents and Chemotherapy, 2001, 45, 1121-1125.	3.2	43
43	Appraisal of a Leishmania major Strain Stably Expressing mCherry Fluorescent Protein for Both In Vitro and In Vivo Studies of Potential Drugs and Vaccine against Cutaneous Leishmaniasis. PLoS Neglected Tropical Diseases, 2012, 6, e1927.	3.0	43
44	Kahalalide F, an Antitumor Depsipeptide in Clinical Trials, and Its Analogues as Effective Antileishmanial Agents. Molecular Pharmaceutics, 2009, 6, 813-824.	4.6	39
45	A Multiplatform Metabolomic Approach to the Basis of Antimonial Action and Resistance in Leishmania infantum. PLoS ONE, 2015, 10, e0130675.	2.5	39
46	Role of the C-type lectins DC-SIGN and L-SIGN in Leishmania interaction with host phagocytes. Immunobiology, 2005, 210, 185-193.	1.9	38
47	Sequence Inversion and Phenylalanine Surrogates at the \hat{I}^2 -Turn Enhance the Antibiotic Activity of Gramicidin S. Journal of Medicinal Chemistry, 2010, 53, 4119-4129.	6.4	38
48	Synthesis of BODIPY-labeled alkylphosphocholines with leishmanicidal activity, as fluorescent analogues of miltefosine. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 6336-6339.	2.2	37
49	The N-terminal segment of pulmonary surfactant lipopeptide SP-C has intrinsic propensity to interact with and perturb phospholipid bilayers. Biochemical Journal, 2004, 377, 183-193.	3.7	34
50	In Vitro Bactericidal Activity of the Antiprotozoal Drug Miltefosine against Streptococcus pneumoniae and Other Pathogenic Streptococci. Antimicrobial Agents and Chemotherapy, 2007, 51, 1844-1848.	3.2	34
51	Conjugation of Quinones with Natural Polyamines: Toward an Expanded Antitrypanosomatid Profile. Journal of Medicinal Chemistry, 2012, 55, 10490-10500.	6.4	34
52	Comparative Study of Limbal Stem Cell Deficiency Diagnosis Methods: Detection of MUC5AC mRNA and Goblet Cells in Corneal Epithelium. Ophthalmology, 2012, 119, 923-929.	5.2	34
53	Lytic cell death induced by melittin bypasses pyroptosis but induces NLRP3 inflammasome activation and IL- $1\hat{l}^2$ release. Cell Death and Disease, 2017, 8, e2984-e2984.	6.3	34
54	Lysine <i>N</i> ^ε -Trimethylation, a Tool for Improving the Selectivity of Antimicrobial Peptides. Journal of Medicinal Chemistry, 2010, 53, 5587-5596.	6.4	30

#	Article	IF	CITATIONS
55	Permeabilization of the Mitochondrial Inner Membrane by Short Cecropin-A-Melittin Hybrid Peptides. FEBS Journal, 1994, 224, 257-263.	0.2	28
56	Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 319, 196-203.	4.7	28
57	Virulence and disease in leishmaniasis: what is relevant for the patient?. Trends in Parasitology, 2004, 20, 297-301.	3.3	26
58	Synthesis and Biological Evaluation of Fluorescent Leishmanicidal Analogues of Hexadecylphosphocholine (Miltefosine) as Probes of Antiparasite Mechanisms. Journal of Medicinal Chemistry, 2007, 50, 5994-6003.	6.4	26
59	Efficacy of cecropin A-melittin peptides on a sepsis model of infection by pan-resistant Acinetobacter baumannii. European Journal of Clinical Microbiology and Infectious Diseases, 2011, 30, 1391-1398.	2.9	26
60	Enhanced leishmanicidal activity of cryptopeptide chimeras from the active N1 domain of bovine lactoferrin. Amino Acids, 2012, 43, 2265-2277.	2.7	24
61	Defeating Leishmania resistance to Miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: A proof of mechanism for trypanosomatid chemotherapy. Journal of Controlled Release, 2012, 161, 835-842.	9.9	24
62	The Antitumoral Depsipeptide IB-01212 Kills Leishmania through an Apoptosis-like Process Involving Intracellular Targets. Molecular Pharmaceutics, 2010, 7, 1608-1617.	4.6	23
63	A BODIPY-embedding miltefosine analog linked to cell-penetrating Tat(48-60) peptide favors intracellular delivery and visualization of the antiparasitic drug. Amino Acids, 2014, 46, 1047-1058.	2.7	22
64	Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2001, 129, 129-139.	1.8	21
65	Genomic Appraisal of the Multifactorial Basis for <i>In Vitro</i> Acquisition of Miltefosine Resistance in Leishmania donovani. Antimicrobial Agents and Chemotherapy, 2016, 60, 4089-4100.	3.2	20
66	Influence of Lysine Nε-Trimethylation and Lipid Composition on the Membrane Activity of the Cecropin A-Melittin Hybrid Peptide CA(1â^'7)M(2â^'9)â€. Journal of Physical Chemistry B, 2010, 114, 16198-16208.	2.6	19
67	Cyclobenzaprine Raises ROS Levels in Leishmania infantum and Reduces Parasite Burden in Infected Mice. PLoS Neglected Tropical Diseases, 2017, 11, e0005281.	3.0	19
68	Membrane-active peptides as anti-infectious agents. Journal of Applied Biomedicine, 2010, 8, 159-167.	1.7	18
69	Biochemical characterization of the protective membrane glycoprotein GP46/M-2 of Leishmania amazonensis. Molecular and Biochemical Parasitology, 1991, 47, 235-243.	1.1	17
70	Riboflavin derivatives for enhanced photodynamic activity against Leishmania parasites. Tetrahedron, 2015, 71, 457-462.	1.9	17
71	Molecular Basis of the Leishmanicidal Activity of the Antidepressant Sertraline as a Drug Repurposing Candidate. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	17
72	<i>Leishmania pifanoi</i> Amastigote Antigen P-4: Epitopes Involved in T-Cell Responsiveness in Human Cutaneous Leishmaniasis. Infection and Immunity, 1998, 66, 3100-3105.	2.2	17

#	Article	IF	CITATIONS
73	Effects of Autologous Serum Eye Drops on Conjunctival Expression of MUC5AC in Patients With Ocular Surface Disorders. Cornea, 2016, 35, 336-341.	1.7	16
74	Expression and regulation of mitochondrial uncoupling protein 1 from brown adipose tissue in Leishmania major promastigotes. Molecular and Biochemical Parasitology, 1998, 93, 191-202.	1.1	15
75	AM3 Modulates Dendritic Cell Pathogen Recognition Capabilities by Targeting DC-SIGN. Antimicrobial Agents and Chemotherapy, 2007, 51, 2313-2323.	3.2	15
76	Synthetic peptides representing the N-terminal segment of surfactant protein C modulate LPS-stimulated TNF-α production by macrophages. Innate Immunity, 2009, 15, 53-62.	2.4	15
77	Stability of Growth Factors in Autologous Serum Eyedrops After Long-Term Storage. Current Eye Research, 2015, 41, 1-7.	1.5	15
78	Cyanobacterial peptides as a tour de force in the chemical space of antiparasitic agents. Archives of Biochemistry and Biophysics, 2019, 664, 24-39.	3.0	15
79	Recombinant vs native Anisakis haemoglobin (Ani s 13): Its appraisal as a new gold standard for the diagnosis of allergy. Experimental Parasitology, 2017, 181, 119-129.	1.2	14
80	Synthesis of 16-mercaptohexadecylphosphocholine, a miltefosine analog with leishmanicidal activity. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 5190-5193.	2.2	13
81	Combination oral therapy against Leishmania amazonensis infection in BALB/c mice using nanoassemblies made from amphiphilic antimony(V) complex incorporating miltefosine. Parasitology Research, 2019, 118, 3077-3084.	1.6	13
82	Structure-activity relationships and mechanistic studies of novel mitochondria-targeted, leishmanicidal derivatives of the 4-aminostyrylquinoline scaffold. European Journal of Medicinal Chemistry, 2019, 171, 38-53.	5.5	13
83	Towards discovery of new leishmanicidal scaffolds able to inhibit <i>Leishmania</i> GSK-3. Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 199-210.	5.2	12
84	Effect of substituents in the A and B rings of chalcones on antiparasite activity. Archiv Der Pharmazie, 2020, 353, e2000157.	4.1	12
85	Phenotypic adaptations of Leishmania donovani to recurrent miltefosine exposure and impact on sand fly infection. Parasites and Vectors, 2020, 13, 96.	2.5	11
86	A Synthetic Strategy for Conjugation of Paromomycin to Cell-Penetrating Tat(48-60) for Delivery and Visualization into Leishmania Parasites. International Journal of Peptides, 2017, 2017, 1-7.	0.7	10
87	Lyophilized Autologous Serum Eyedrops: Experimental and Comparative Study. American Journal of Ophthalmology, 2020, 213, 260-266.	3.3	10
88	Phosphorylation of the N-Terminal and C-Terminal CD3-ϵ–ITAM Tyrosines Is Differentially Regulated in T Cells. Biochemical and Biophysical Research Communications, 2002, 291, 574-581.	2.1	9
89	Comparative study on polypeptide patterns of larvae of Trichinella isolates by two-dimensional electrophoresis. Journal of Helminthology, 1987, 61, 225-228.	1.0	8
90	Isolation of Two Pyruvate Kinase Activities in the Parasitic Protozoan Leishmania mexicana amazonensis. Archives of Biochemistry and Biophysics, 1993, 300, 466-471.	3.0	8

#	Article	IF	CITATIONS
91	Solid-Phase Synthesis of the Cyclic Lipononadepsipeptide [N-Mst(Ser1), D-Ser4, L-Thr6, L-Asp8, L-Thr9]Syringotoxin. Chemistry - A European Journal, 2003, 9, 1096-1103.	3.3	7
92	Acidic pH stress induces protein tyrosine phosphorylation in Leishmania pifanoi. Molecular and Biochemical Parasitology, 1997, 84, 123-129.	1.1	6
93	The induction of NOS2 expression by the hybrid cecropin A–melittin antibiotic peptide CA(1–8)M(1–18) in the monocytic line RAW 264.7 is triggered by a temporary and reversible plasma membrane permeation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2006, 1763, 110-119.	4.1	6
94	Cecropin'Ã,,ìmelittin hybrid peptides as versatile templates in the development of membrane-active antibiotic agents1. Cellular and Molecular Mechanisms of Toxin Action, 2003, , 209-259.	0.0	6
95	Structural Framework for the Modulation of the Activity of the Hybrid Antibiotic Peptide Cecropin Aâ€Melittin [CA(1â€"7)M(2â€"9)] by N ^ε â€Lysine Trimethylation. ChemBioChem, 2011, 12, 2177-21	183.	5
96	Fluorescent labeling of Acanthamoeba assessed in situ from corneal sectioned microscopy. Biomedical Optics Express, 2012, 3, 2489.	2.9	5
97	Platelet-Activating Factor Receptor Contributes to Antileishmanial Function of Miltefosine. Journal of Immunology, 2015, 194, 5961-5967.	0.8	5
98	Widening the antimicrobial spectrum of esters of bicyclic amines: In vitro effect on gram-positive Streptococcus pneumoniae and gram-negative non-typeable Haemophilus influenzae biofilms. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 96-104.	2.4	5
99	Hybrid Cyclobutane/Proline-Containing Peptidomimetics: The Conformational Constraint Influences Their Cell-Penetration Ability. International Journal of Molecular Sciences, 2021, 22, 5092.	4.1	5
100	Design of Bactericidal Peptides Against Escherichia coli O157:H7, Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Medicinal Chemistry, 2018, 14, 741-752.	1.5	5
101	Morphogenesis of the human laryngeal ventricles. Head and Neck, 2013, 35, 361-369.	2.0	4
102	Mechanisms of Action of Substituted \hat{l}^2 -Amino Alkanols on Leishmania donovani. Antimicrobial Agents and Chemotherapy, 2015, 59, 1211-1218.	3.2	4
103	Chiral Cyclobutane-Containing Cell-Penetrating Peptides as Selective Vectors for Anti-Leishmania Drug Delivery Systems. International Journal of Molecular Sciences, 2020, 21, 7502.	4.1	4
104	Naphthoquinone as a New Chemical Scaffold for Leishmanicidal Inhibitors of Leishmania GSK-3. Biomedicines, 2022, 10, 1136.	3.2	4
105	Topography of the subunits of Micrococcus lysodeikticus F1-ATPase. Molecular and Cellular Biochemistry, 1983, 56, 73-80.	3.1	3
106	Imidazo[2,1-a]isoindole scaffold as an uncharted structure active on Leishmania donovani. European Journal of Medicinal Chemistry, 2019, 182, 111568.	5.5	3
107	Chemistry and Applications of Synthetic Antimicrobial Peptides. , 2001, , .		3
108	Partial characterization of membrane-associated proteinases from Micrococcus lysodeikticus. Molecular and Cellular Biochemistry, 1982, 43, 27-34.	3.1	2

#	Article	IF	Citations
109	Characterization of Developmentally Regulated Molecules of Leishmania. , 1987, , 123-136.		2
110	Proteolytic activities in preparations of Rhodospirillum rubrum reaction centers. Biochimica Et Biophysica Acta - Bioenergetics, 1984, 764, 125-131.	1.0	1
111	Eukaryotic antibiotic peptides: not only a membrane business. Drug Discovery Today, 1999, 4, 254-256.	6.4	1
112	Co-infection with HIV., 2013, , 167-181.		1
113	Pà ©ptidos antibióticos eucarióticos: ¿una nueva alternativa en clÃnica?. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2003, 21, 358-365.	0.5	1
114	The Physical Matrix of the Plasma Membrane as a Target: The Charm of Drugs with Low Specificity. RSC Drug Discovery Series, 2017, , 248-281.	0.3	1
115	Essential Role of Enzymatic Activity in the Leishmanicidal Mechanism of the Eosinophil Cationic Protein (RNase 3). ACS Infectious Diseases, 2022, 8, 1207-1217.	3.8	1
116	The antenna system of Rhodospirillum rubrum. Detection of macromolecular constituents not stainable by Coomassie brilliant blue in solubilized preparations of the B880 complex. Photosynthesis Research, 1985, 7, 151-161.	2.9	0
117	Energy metabolism as a target for cyclobenzaprine: A drug candidate against Visceral Leishmaniasis. Bioorganic Chemistry, 2022, 127, 106009.	4.1	O