
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 2013, 88, 15-30.	10.4	1,224
2	Standards for distribution models in biodiversity assessments. Science Advances, 2019, 5, eaat4858.	10.3	605
3	Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landscape Ecology, 2007, 22, 617-631.	4.2	571
4	Borneo and Indochina are Major Evolutionary Hotspots for Southeast Asian Biodiversity. Systematic Biology, 2014, 63, 879-901.	5.6	283
5	Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2633-2641.	4.0	240
6	Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.	5.7	182
7	Contribution of the Natura 2000 Network to Biodiversity Conservation in Italy. Conservation Biology, 2007, 21, 1433-1444.	4.7	178
8	Ecological Networks as Conceptual Frameworks or Operational Tools in Conservation. Conservation Biology, 2007, 21, 1414-1422.	4.7	168
9	Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecology and Biogeography, 2013, 22, 302-317.	5.8	152
10	Gap analysis of terrestrial vertebrates in Italy: Priorities for conservation planning in a human dominated landscape. Biological Conservation, 2006, 133, 455-473.	4.1	123
11	The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 2013, 22, 52-63.	5.8	121
12	Setting Priorities for Regional Conservation Planning in the Mediterranean Sea. PLoS ONE, 2013, 8, e59038.	2.5	120
13	A gap analysis of Southeast Asian mammals based on habitat suitability models. Biological Conservation, 2008, 141, 2730-2744.	4.1	115
14	Assessing habitat quality for conservation using an integrated occurrenceâ€mortality model. Journal of Applied Ecology, 2009, 46, 600-609.	4.0	114
15	Knowing the past to predict the future: landâ€use change and the distribution of invasive bullfrogs. Global Change Biology, 2010, 16, 528-537.	9.5	112
16	Assessing the reliability of species distribution projections in climate change research. Diversity and Distributions, 2021, 27, 1035-1050.	4.1	110
17	Conserving biodiversity in production landscapes. Ecological Applications, 2010, 20, 1721-1732.	3.8	109
18	Predicting potential distribution of the jaguar (<i>Panthera onca</i>) in Mexico: identification of priority areas for conservation. Diversity and Distributions, 2011, 17, 350-361.	4.1	108

#	Article	IF	CITATIONS
19	Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2693-2702.	4.0	107
20	Size-dependent resistance of protected areas to land-use change. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1297-1304.	2.6	103
21	What spatial data do we need to develop global mammal conservation strategies?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2623-2632.	4.0	99
22	On how much biodiversity is covered in Europe by national protected areas and by the Natura 2000 network: insights from terrestrial vertebrates. Conservation Biology, 2015, 29, 986-995.	4.7	95
23	Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biological Conservation, 2016, 198, 193-201.	4.1	94
24	Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation. Die Naturwissenschaften, 2016, 103, 15.	1.6	94
25	Ensemble distribution models in conservation prioritization: from consensus predictions to consensus reserve networks. Diversity and Distributions, 2014, 20, 309-321.	4.1	92
26	The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2681-2692.	4.0	87
27	Ecological–economic optimization of biodiversity conservation under climate change. Nature Climate Change, 2011, 1, 355-359.	18.8	85
28	Longâ€Distance Dispersal of a Rescued Wolf From the Northern Apennines to the Western Alps. Journal of Wildlife Management, 2009, 73, 1300-1306.	1.8	83
29	Global drivers of population density in terrestrial vertebrates. Global Ecology and Biogeography, 2018, 27, 968-979.	5.8	80
30	Predicting present and future intraâ€specific genetic structure through niche hindcasting across 24 millennia. Ecology Letters, 2012, 15, 649-657.	6.4	79
31	Threats from Climate Change to Terrestrial Vertebrate Hotspots in Europe. PLoS ONE, 2013, 8, e74989.	2.5	79
32	Large carnivore expansion in Europe is associated with human population density and land cover changes. Diversity and Distributions, 2021, 27, 602-617.	4.1	78
33	Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia, 2016, 181, 683-693.	2.0	77
34	Is biofuel policy harming biodiversity in Europe?. GCB Bioenergy, 2009, 1, 18-34.	5.6	74
35	A greener Greenland? Climatic potential and long-term constraints on future expansions of trees and shrubs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120479.	4.0	74
36	Conserving the functional and phylogenetic trees of life of European tetrapods. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140005.	4.0	70

#	Article	IF	CITATIONS
37	Addressing common pitfalls does not provide more support to geographical and ecological abundantâ€centre hypotheses. Ecography, 2019, 42, 696-705.	4.5	69
38	Spatial mismatch of phylogenetic diversity across three vertebrate groups and protected areas in Europe. Diversity and Distributions, 2014, 20, 674-685.	4.1	67
39	Performance tradeoffs in targetâ€group bias correction for species distribution models. Ecography, 2017, 40, 1076-1087.	4.5	65
40	Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe. Acta Oecologica, 2011, 37, 399-412.	1.1	64
41	Potential Impacts of Climate Change on Ecosystem Services in Europe: The Case of Pest Control by Vertebrates. BioScience, 2012, 62, 658-666.	4.9	61
42	Long-term change in the structure of a Posidonia oceanica landscape and its reference for a monitoring plan. Marine Ecology, 2006, 27, 299-309.	1.1	58
43	Land-Cover Change and the Future of the Apennine Brown Bear: A Perspective from the Past. Journal of Mammalogy, 2008, 89, 1502-1511.	1.3	58
44	Identifying fish nurseries using density and persistence measures. Marine Ecology - Progress Series, 2009, 381, 287-296.	1.9	58
45	Uncertainties in the identification of potential dispersal corridors: The importance of behaviour, sex, and algorithm. Basic and Applied Ecology, 2017, 21, 66-75.	2.7	55
46	Adapting global conservation strategies to climate change at the European scale: The otter as a flagship species. Biological Conservation, 2011, 144, 2068-2080.	4.1	52
47	The Use of Climatic Niches in Screening Procedures for Introduced Species to Evaluate Risk of Spread: A Case with the American Eastern Grey Squirrel. PLoS ONE, 2013, 8, e66559.	2.5	48
48	Climateâ€based empirical models show biased predictions of butterfly communities along environmental gradients. Ecography, 2012, 35, 684-692.	4.5	42
49	Modeling the potential distribution for a range-expanding species: Wolf recolonization of the Alpine range. Biological Conservation, 2013, 158, 63-72.	4.1	41
50	Balancing conservation priorities for nature and for people in Europe. Science, 2021, 372, 856-860.	12.6	39
51	Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. Journal of Biogeography, 2020, 47, 181-192.	3.0	38
52	Combining multi-state species distribution models, mortality estimates, and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biological Conservation, 2019, 237, 19-27.	4.1	36
53	Forest changes over a century in Sardinia: implications for conservation in a Mediterranean hotspot. Agroforestry Systems, 2012, 85, 319-330.	2.0	32
54	Reconstructing geographical parthenogenesis: effects of niche differentiation and reproductive mode on Holocene range expansion of an alpine plant. Ecology Letters, 2018, 21, 392-401.	6.4	32

#	Article	IF	CITATIONS
55	Environment and evolutionary history shape phylogenetic turnover in European tetrapods. Nature Communications, 2019, 10, 249.	12.8	32
56	Spatial predictions of landâ€use transitions and associated threats to biodiversity: the case of forest regrowth in mountain grasslands. Applied Vegetation Science, 2013, 16, 227-236.	1.9	31
57	Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Molecular Ecology, 2016, 25, 2046-2064.	3.9	31
58	Historical spatial baselines in conservation and management of marine resources. Fish and Fisheries, 2011, 12, 289-298.	5.3	30
59	A frequency distribution approach to hotspot identification. Population Ecology, 2011, 53, 351-359.	1.2	30
60	Revisiting tree-migration rates: Abies alba (Mill.), a case study. Vegetation History and Archaeobotany, 2014, 23, 113-122.	2.1	30
61	Past Extinctions of Homo Species Coincided with Increased Vulnerability to Climatic Change. One Earth, 2020, 3, 480-490.	6.8	30
62	Conservation value of historical data: reconstructing stock dynamics of turbot during the last century in the Kattegat-Skagerrak. Marine Ecology - Progress Series, 2009, 386, 197-206.	1.9	29
63	BioScore–Cost-effective assessment of policy impact on biodiversity using species sensitivity scores. Journal for Nature Conservation, 2010, 18, 142-148.	1.8	28
64	Temperature Range Shifts for Three European Tree Species over the Last 10,000 Years. Frontiers in Plant Science, 2016, 7, 1581.	3.6	28
65	Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. Journal of Biogeography, 2017, 44, 2828-2838.	3.0	28
66	Spatial analyses of multiâ€ŧrophic terrestrial vertebrate assemblages in Europe. Global Ecology and Biogeography, 2019, 28, 1636-1648.	5.8	27
67	TETRAâ€EU 1.0: A speciesâ€level trophic metaweb of European tetrapods. Global Ecology and Biogeography, 2020, 29, 1452-1457.	5.8	26
68	Climate change promotes hybridisation between deeply divergent species. PeerJ, 2017, 5, e3072.	2.0	26
69	Incorporating spatial population structure in gap analysis reveals inequitable assessments of species protection. Diversity and Distributions, 2014, 20, 698-707.	4.1	25
70	The diversity of biotic interactions complements functional and phylogenetic facets of biodiversity. Current Biology, 2022, 32, 2093-2100.e3.	3.9	25
71	Coverage of vertebrate species distributions by Important Bird and Biodiversity Areas and Special Protection Areas in the European Union. Biological Conservation, 2016, 202, 1-9.	4.1	23
72	Meta-Omics Reveals Genetic Flexibility of Diatom Nitrogen Transporters in Response to Environmental Changes. Molecular Biology and Evolution, 2019, 36, 2522-2535.	8.9	23

#	Article	IF	CITATIONS
73	There and back again? Combining habitat suitability modelling and connectivity analyses to assess a potential return of the otter to Switzerland. Animal Conservation, 2013, 16, 584-594.	2.9	22
74	Improving spatial predictions of taxonomic, functional and phylogenetic diversity. Journal of Ecology, 2018, 106, 76-86.	4.0	21
75	Systematic conservation planning in the Mediterranean: a flexible tool for the identification of no-take marine protected areas. ICES Journal of Marine Science, 2009, 66, 137-146.	2.5	20
76	Spatial and temporal depletion of haddock and pollack during the last century in the Kattegat-Skagerrak. Journal of Applied Ichthyology, 2012, 28, 200-208.	0.7	19
77	Modeling the distribution of Apennine brown bears during hyperphagia to reduce the impact of wild boar hunting. European Journal of Wildlife Research, 2015, 61, 241-253.	1.4	18
78	Drivers of change in the realised climatic niche of terrestrial mammals. Ecography, 2021, 44, 1180-1190.	4.5	18
79	A new European land systems representation accounting for landscape characteristics. Landscape Ecology, 2021, 36, 2215-2234.	4.2	17
80	Addressing the Eltonian shortfall with traitâ€based interaction models. Ecology Letters, 2022, 25, 889-899.	6.4	17
81	Spatial-explicit assessment of current and future conservation options for the endangered Corsican Red Deer (Cervus elaphus corsicanus) in Sardinia. Biodiversity and Conservation, 2009, 18, 2001-2016.	2.6	16
82	Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2722-2728.	4.0	16
83	Suitability, success and sinks: how do predictions of nesting distributions relate to fitness parameters in high arctic waders?. Diversity and Distributions, 2013, 19, 1496-1505.	4.1	15
84	A Major Change in Rate of Climate Niche Envelope Evolution during Hominid History. IScience, 2020, 23, 101693.	4.1	14
85	Geographic patterns of predator niche breadth and prey species richness. Ecological Research, 2016, 31, 111-115.	1.5	13
86	The role of habitat fragmentation in Pleistocene megafauna extinction in Eurasia. Ecography, 2021, 44, 1619-1630.	4.5	13
87	Hierarchical, multiâ€grain rendezvous site selection by wolves in southern Italy. Journal of Wildlife Management, 2018, 82, 1049-1061.	1.8	12
88	Drilling Down Hotspots of Intraspecific Diversity to Bring Them Into On-Ground Conservation of Threatened Species. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	12
89	Reconstructing hotspots of genetic diversity from glacial refugia and subsequent dispersal in Italian common toads (Bufo bufo). Scientific Reports, 2021, 11, 260.	3.3	12
90	Endemism and diversity in European montane mammals: macro-ecological patterns. Biological Journal of the Linnean Society, 2019, 128, 225-237.	1.6	11

#	Article	IF	CITATIONS
91	The spatial scaling of food web structure across European biogeographical regions. Ecography, 2021, 44, 653-664.	4.5	10
92	Testing the occurrence of convergence in the craniomandibular shape evolution of living carnivorans*. Evolution; International Journal of Organic Evolution, 2021, 75, 1738-1752.	2.3	10
93	Mapping biodiversity hotspots and conservation priorities for the Euro-Mediterranean headwater ecosystems, as inferred from diversity and distribution of a water beetle lineage. Biodiversity and Conservation, 2015, 24, 149-170.	2.6	9
94	A method for mapping morphological convergence on threeâ€dimensional digital models: the case of the mammalian sabreâ€tooth. Palaeontology, 2021, 64, 573-584.	2.2	9
95	Is geographic sampling bias representative of environmental space?. Ecological Informatics, 2021, 64, 101369.	5.2	7
96	Frequency distribution curves and the identification of hotspots: response to comments. Population Ecology, 2011, 53, 603-604.	1.2	5
97	Identifying national responsibility species based on spatial conservation prioritization. Biological Conservation, 2019, 236, 411-419.	4.1	3
98	Least speciose among the most speciose: Natural history correlates of monospecific and bispecific genera of Rodentia and Soricomorpha. Integrative Zoology, 2017, 12, 489-499.	2.6	1
99	New Avenues for Old Travellers: Phenotypic Evolutionary Trends Meet Morphodynamics, and Both Enter the Global Change Biology Era. Evolutionary Biology, 2021, 48, 379-393.	1.1	1