List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3811748/publications.pdf Version: 2024-02-01

TOMAS ROSLIN

#	Article	IF	CITATIONS
1	Towards a modular theory of trophic interactions. Functional Ecology, 2023, 37, 26-43.	3.6	10
2	A molecularâ€based identification resource for the arthropods of Finland. Molecular Ecology Resources, 2022, 22, 803-822.	4.8	26
3	Subtle structures with notâ€soâ€subtle functions: A data set of arthropod constructs and their host plants. Ecology, 2022, 103, e3639.	3.2	2
4	Herbivory in a changing climate—Effects of plant genotype and experimentally induced variation in plant phenology on two summerâ€active lepidopteran herbivores and one fungal pathogen. Ecology and Evolution, 2022, 12, e8495.	1.9	2
5	Ecological network complexity scales with area. Nature Ecology and Evolution, 2022, 6, 307-314.	7.8	35
6	Niche differentiation within a cryptic pathogen complex: climatic drivers and hyperparasitism at multiple spatial scales. Ecography, 2022, 2022, .	4.5	11
7	Nationally reported metrics can't adequately guide transformative change in biodiversity policy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	9
8	Unveiling the complexity and ecological function of aquatic macrophyte–animal networks in coastal ecosystems. Biological Reviews, 2022, , .	10.4	3
9	Spatio-temporal patterns in arctic fox (Vulpes alopex) diets revealed by molecular analysis of scats from Northeast Greenland. Polar Science, 2022, 32, 100838.	1.2	1
10	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	9.5	12
11	Imprints of latitude, host taxon, and decay stage on fungusâ€associated arthropod communities. Ecological Monographs, 2022, 92, .	5.4	7
12	Urbanization affects oakâ \in "pathogen interactions across spatial scales. Ecography, 2022, 2022, .	4.5	5
13	Climate change reshuffles northern species within their niches. Nature Climate Change, 2022, 12, 587-592.	18.8	46
14	Comparison of traditional and DNA metabarcoding samples for monitoring tropical soil arthropods (Formicidae, Collembola and Isoptera). Scientific Reports, 2022, 12, .	3.3	7
15	Emerging technologies revolutionise insect ecology and monitoring. Trends in Ecology and Evolution, 2022, 37, 872-885.	8.7	72
16	Elevation and plant species identity jointly shape a diverse arbuscular mycorrhizal fungal community in the High Arctic. New Phytologist, 2022, 236, 671-683.	7.3	5
17	Robustness of a metaâ€network to alternative habitat loss scenarios. Oikos, 2021, 130, 133-142.	2.7	5
18	Microclimate structures communities, predation and herbivory in the High Arctic. Journal of Animal Ecology, 2021, 90, 859-874.	2.8	6

#	Article	IF	CITATIONS
19	DNA traces the origin of honey by identifying plants, bacteria and fungi. Scientific Reports, 2021, 11, 4798.	3.3	27
20	Temperature affects both the Grinnellian and Eltonian dimensions of ecological niches – A tale of two Arctic wolf spiders. Basic and Applied Ecology, 2021, 50, 132-143.	2.7	14
21	Accounting for species interactions is necessary for predicting how arctic arthropod communities respond to climate change. Ecography, 2021, 44, 885-896.	4.5	24
22	Woody encroachment in grassland elicits complex changes in the functional structure of above―and belowground biota. Ecosphere, 2021, 12, e03512.	2.2	14
23	Landâ€use intensity affects the potential for apparent competition within and between habitats. Journal of Animal Ecology, 2021, 90, 1891-1905.	2.8	1
24	Organic fertilisation enhances generalist predators and suppresses aphid growth in the absence of specialist predators. Journal of Applied Ecology, 2021, 58, 1455-1465.	4.0	13
25	Climate warming dominates over plant genotype in shaping the seasonal trajectory of foliar fungal communities on oak. New Phytologist, 2021, 231, 1770-1783.	7.3	31
26	Legacy effects of temporary grassland in annual crop rotation on soil ecosystem services. Science of the Total Environment, 2021, 780, 146140.	8.0	16
27	Phenological shifts of abiotic events, producers and consumers across a continent. Nature Climate Change, 2021, 11, 241-248.	18.8	37
28	Search for topâ€down and bottomâ€up drivers of latitudinal trends in insect herbivory in oak trees in Europe. Global Ecology and Biogeography, 2021, 30, 651-665.	5.8	18
29	Community phenology of insects on oak: local differentiation along a climatic gradient. Ecosphere, 2021, 12, .	2.2	0
30	The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Diversity, 2021, 111, 573-588.	12.3	42
31	SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Molecular Ecology Resources, 2020, 20, 256-267.	4.8	50
32	Climate and host genotype jointly shape tree phenology, disease levels and insect attacks. Oikos, 2020, 129, 391-401.	2.7	21
33	Host plant phenology, insect outbreaks and herbivore communities – The importance of timing. Journal of Animal Ecology, 2020, 89, 829-841.	2.8	25
34	Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proceedings of the United States of America, 2020, 117, 18557-18565.	7.1	57
35	Differences in spatial versus temporal reaction norms for spring and autumn phenological events. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31249-31258.	7.1	25
36	Parasitoids indicate major climateâ€induced shifts in arctic communities. Global Change Biology, 2020, 26, 6276-6295.	9.5	26

#	Article	IF	CITATIONS
37	Crop diversity benefits carabid and pollinator communities in landscapes with semiâ€natural habitats. Journal of Applied Ecology, 2020, 57, 2170-2179.	4.0	83
38	Heated rivalries: Phenological variation modifies competition for pollinators among arctic plants. Global Change Biology, 2020, 26, 6313-6325.	9.5	9
39	Higher host plant specialization of rootâ€essociated endophytes than mycorrhizal fungi along an arctic elevational gradient. Ecology and Evolution, 2020, 10, 8989-9002.	1.9	11
40	Accounting for environmental variation in coâ€occurrence modelling reveals the importance of positive interactions in rootâ€associated fungal communities. Molecular Ecology, 2020, 29, 2736-2746.	3.9	29
41	Threats from the air: Damselfly predation on diverse prey taxa. Journal of Animal Ecology, 2020, 89, 1365-1374.	2.8	14
42	Contrasting latitudinal patterns in diversity and stability in a highâ€latitude speciesâ€rich moth community. Global Ecology and Biogeography, 2020, 29, 896-907.	5.8	32
43	Monitoring Fungal Communities With the Global Spore Sampling Project. Frontiers in Ecology and Evolution, 2020, 7, .	2.2	25
44	Chronicles of nature calendar, a long-term and large-scale multitaxon database on phenology. Scientific Data, 2020, 7, 47.	5.3	22
45	Impacts of urbanization on insect herbivory and plant defences in oak trees. Oikos, 2019, 128, 113-123.	2.7	49
46	Finding flies in the mushroom soup: Host specificity of fungusâ€associated communities revisited with a novel molecular method. Molecular Ecology, 2019, 28, 190-202.	3.9	18
47	Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Molecular Ecology Resources, 2019, 19, 1516-1530.	4.8	64
48	Spatioâ€ŧemporal scaling of biodiversity in acoustic tropical bird communities. Ecography, 2019, 42, 1936-1947.	4.5	19
49	An ecosystem-wide reproductive failure with more snow in the Arctic. PLoS Biology, 2019, 17, e3000392.	5.6	53
50	Landscape connectivity explains interaction network patterns at multiple scales. Ecology, 2019, 100, e02883.	3.2	12
51	Local management actions override farming systems in determining dung beetle species richness, abundance and biomass and associated ecosystem services. Basic and Applied Ecology, 2019, 41, 13-21.	2.7	7
52	Spatial variability in a plant–pollinator community across a continuous habitat: high heterogeneity in the face of apparent uniformity. Ecography, 2019, 42, 1558-1568.	4.5	17
53	A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecological Monographs, 2019, 89, e01370.	5.4	290
54	A quantitative framework for investigating the reliability of empirical network construction. Methods in Ecology and Evolution, 2019, 10, 902-911.	5.2	22

TOMAS ROSLIN

#	Article	IF	CITATIONS
55	The forgotten season: the impact of autumn phenology on a specialist insect herbivore community on oak. Ecological Entomology, 2019, 44, 425-435.	2.2	28
56	Compound- and context-dependent effects of antibiotics on greenhouse gas emissions from livestock. Royal Society Open Science, 2019, 6, 182049.	2.4	3
57	Assessing changes in arthropod predator–prey interactions through <scp>DNA</scp> â€based gut content analysis—variable environment, stable diet. Molecular Ecology, 2019, 28, 266-280.	3.9	54
58	Flowerâ€visitor communities of an arctoâ€alpine plant—Global patterns in species richness, phylogenetic diversity and ecological functioning. Molecular Ecology, 2019, 28, 318-335.	3.9	15
59	Introduction: Special issue on species interactions, ecological networks and community dynamics – Untangling the entangled bank using molecular techniques. Molecular Ecology, 2019, 28, 157-164.	3.9	20
60	Bringing Elton and Grinnell together: a quantitative framework to represent the biogeography of ecological interaction networks. Ecography, 2019, 42, 401-415.	4.5	85
61	Betweenâ€year changes in community composition shape species' roles in an Arctic plant–pollinator network. Oikos, 2018, 127, 1163-1176.	2.7	35
62	Related herbivore species show similar temporal dynamics. Journal of Animal Ecology, 2018, 87, 801-812.	2.8	8
63	Limited dietary overlap amongst resident Arctic herbivores in winter: complementary insights from complementary methods. Oecologia, 2018, 187, 689-699.	2.0	28
64	Dung beetles as drivers of ecosystem multifunctionality: Are response and effect traits interwoven?. Science of the Total Environment, 2018, 616-617, 1440-1448.	8.0	35
65	Comparing species interaction networks along environmental gradients. Biological Reviews, 2018, 93, 785-800.	10.4	203
66	Global predation pressure redistribution under future climate change. Nature Climate Change, 2018, 8, 1087-1091.	18.8	53
67	From theory to experimental design—Quantifying a trait-based theory of predator-prey dynamics. PLoS ONE, 2018, 13, e0195919.	2.5	11
68	Spatiotemporal snowmelt patterns within a high Arctic landscape, with implications for flora and fauna. Arctic, Antarctic, and Alpine Research, 2018, 50, .	1.1	35
69	High resistance towards herbivore-induced habitat change in a high Arctic arthropod community. Biology Letters, 2018, 14, 20180054.	2.3	13
70	Interaction webs in arctic ecosystems: Determinants of arctic change?. Ambio, 2017, 46, 12-25.	5.5	59
71	Higher predation risk for insect prey at low latitudes and elevations. Science, 2017, 356, 742-744.	12.6	353
72	Foodâ€web structure of willowâ€galling sawflies and their natural enemies across Europe. Ecology, 2017, 98, 1730-1730.	3.2	16

#	Article	IF	CITATIONS
73	How to make more out of community data? A conceptual framework and its implementation as models and software. Ecology Letters, 2017, 20, 561-576.	6.4	646
74	Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecology and Evolution, 2017, 7, 8588-8598.	1.9	62
75	The importance of species identity and interactions for multifunctionality depends on how ecosystem functions are valued. Ecology, 2017, 98, 2626-2639.	3.2	56
76	Dispersal, host genotype and environment shape the spatial dynamics of a parasite in the wild. Ecology, 2017, 98, 2574-2584.	3.2	16
77	Greenhouse gas emissions from dung pats vary with dung beetle species and with assemblage composition. PLoS ONE, 2017, 12, e0178077.	2.5	43
78	A high arctic experience of uniting research and monitoring. Earth's Future, 2017, 5, 650-654.	6.3	16
79	An ecological function in crisis? The temporal overlap between plant flowering and pollinator function shrinks as the Arctic warms. Ecography, 2016, 39, 1250-1252.	4.5	61
80	The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Scientific Reports, 2016, 6, 18140.	3.3	91
81	Mother knows the best mould: an essential role for non-wood dietary components in the life cycle of a saproxylic scarab beetle. Oecologia, 2016, 182, 163-175.	2.0	14
82	Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160150.	2.6	67
83	The use of DNA barcodes in food web construction—terrestrial and aquatic ecologists unite!. Genome, 2016, 59, 603-628.	2.0	89
84	One fly to rule them all—muscid flies are the key pollinators in the Arctic. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161271.	2.6	63
85	A rapid assessment of a poorly known insect group. Insect Conservation and Diversity, 2016, 9, 49-62.	3.0	3
86	Spatial subsidies in spider diets vary with shoreline structure: Complementary evidence from molecular diet analysis and stable isotopes. Ecology and Evolution, 2016, 6, 8431-8439.	1.9	33
87	Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Scientific Reports, 2016, 6, 35275.	3.3	122
88	Disentangling the â€ [~] brown world' faecal–detritus interaction web: dung beetle effects on soil microbial properties. Oikos, 2016, 125, 629-635.	2.7	47
89	What you need is what you eat? Prey selection by the bat <i>Myotis daubentonii</i> . Molecular Ecology, 2016, 25, 1581-1594.	3.9	116
90	Dung beetle species interactions and multifunctionality are affected by an experimentally warmed climate. Oikos, 2016, 125, 1607-1616.	2.7	30

#	Article	IF	CITATIONS
91	Establishing a communityâ€wide <scp>DNA</scp> barcode library as a new tool for arctic research. Molecular Ecology Resources, 2016, 16, 809-822.	4.8	77
92	Opportunistic habitat use by <i><scp>O</scp>smoderma barnabita</i> (Coleoptera: Scarabaeidae), a saproxylic beetle dependent on tree cavities. Insect Conservation and Diversity, 2016, 9, 38-48.	3.0	16
93	Fragmentation-related patterns of genetic differentiation in pedunculate oak (<i>Quercus) Tj ETQq1 1 0.78</i>	84314 rgB 1.3	T /Qyerlock 1(
94	Exposing the structure of an Arctic food web. Ecology and Evolution, 2015, 5, 3842-3856.	1.9	91
95	A stable, genetically determined colour dimorphism in the dung beetle <i><scp>A</scp>phodius depressus</i> : patterns and mechanisms. Ecological Entomology, 2015, 40, 575-584.	2.2	Ο
96	Genetic diversity and connectivity shape herbivore load within an oak population at its range limit. Ecosphere, 2015, 6, art101.	2.2	16
97	<scp>MESOCLOSURES</scp> – increasing realism in mesocosm studies of ecosystem functioning. Methods in Ecology and Evolution, 2015, 6, 916-924.	5.2	11
98	Beyond metacommunity paradigms: habitat configuration, life history, and movement shape an herbivore community on oak. Ecology, 2015, 96, 3175-3185.	3.2	8
99	First Observation of a Four-egg Clutch of Long-tailed Jaeger (Stercorarius longicaudus). Wilson Journal of Ornithology, 2015, 127, 149-153.	0.2	Ο
100	No detectable trophic cascade in a high-Arctic arthropod food web. Basic and Applied Ecology, 2015, 16, 652-660.	2.7	13
101	Species' roles in food webs show fidelity across a highly variable oak forest. Ecography, 2015, 38, 130-139.	4.5	52
102	Extensive niche overlap among the dominant arthropod predators of the High Arctic. Basic and Applied Ecology, 2015, 16, 86-92.	2.7	39
103	Arthropod Distribution in a Tropical Rainforest: Tackling a Four Dimensional Puzzle. PLoS ONE, 2015, 10, e0144110.	2.5	102
104	Biodiversity inventories in high gear: DNA barcoding facilitates a rapid biotic survey of a temperate nature reserve. Biodiversity Data Journal, 2015, 3, e6313.	0.8	69
105	Species–area relationships across four trophic levels – decreasing island size truncates food chains. Ecography, 2014, 37, 443-453.	4.5	35
106	Complementary molecular information changes our perception of food web structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1885-1890.	7.1	138
107	Making the cryptic visible – resolving the species complex of <i><scp>A</scp>phodius fimetarius</i> (<scp>L</scp> innaeus) and <i><scp>A</scp>phodius pedellus</i> (de <scp>G</scp> eer) (<scp>C</scp> oleoptera: Scarabaeidae) by three complementary methods. Systematic Entomology, 2014, 39, 531-547.	3.9	24
108	Antagonistic interaction networks are structured independently of latitude and host guild. Ecology Letters, 2014, 17, 340-349.	6.4	128

TOMAS ROSLIN

#	Article	IF	CITATIONS
109	Apparent competition leaves no detectable imprint on patterns of community composition: observations from a natural experiment. Ecological Entomology, 2013, 38, 522-530.	2.2	11
110	Using citizen scientists to measure an ecosystem service nationwide. Ecology, 2013, 94, 2645-2652.	3.2	48
111	Freezing cold yet diverse: dissecting a high-Arctic parasitoid community associated with Lepidoptera hosts. Canadian Entomologist, 2013, 145, 193-218.	0.8	23
112	Quantifying Beetle-Mediated Effects on Gas Fluxes from Dung Pats. PLoS ONE, 2013, 8, e71454.	2.5	75
113	Indirect Interactions in the High Arctic. PLoS ONE, 2013, 8, e67367.	2.5	28
114	The identity of the Finnish <i>Osmoderma</i> (Coleoptera: Scarabaeidae, Cetoniinae) population established by COI sequencing. Entomologica Fennica, 2013, 24, 147-155.	0.6	10
115	Arthropod Diversity in a Tropical Forest. Science, 2012, 338, 1481-1484.	12.6	445
116	Sizing up community genetics: it's a matter of scale. Oikos, 2012, 121, 481-488.	2.7	74
117	High temporal consistency in quantitative food web structure in the face of extreme species turnover. Oikos, 2012, 121, 1771-1782.	2.7	37
118	Crossâ€kingdom interactions matter: fungalâ€mediated interactions structure an insect community on oak. Ecology Letters, 2012, 15, 177-185.	6.4	66
119	Dung Beetle Populations: Structure and Consequences. , 2011, , 220-244.		7
120	The relative importance of host-plant genetic diversity in structuring the associated herbivore community. Ecology, 2011, 92, 1594-1604.	3.2	44
121	Can we predict indirect interactions from quantitative food webs? - an experimental approach. Journal of Animal Ecology, 2011, 80, 108-118.	2.8	55
122	Shrinking by numbers: landscape context affects the species composition but not the quantitative structure of local food webs. Journal of Animal Ecology, 2011, 80, 622-631.	2.8	57
123	Spatial location dominates over host plant genotype in structuring an herbivore community. Ecology, 2010, 91, 2660-2672.	3.2	83
124	A metaâ€analysis of preference–performance relationships in phytophagous insects. Ecology Letters, 2010, 13, 383-393.	6.4	680
125	Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecological Entomology, 2010, 35, 623-638.	2.2	118
126	Overrun by the neighbors: Landscape context affects strength and sign of local adaptation. Ecology, 2010, 91, 2253-2260.	3.2	36

#	Article	IF	CITATIONS
127	Competition as a structuring force in leaf miner communities. Oikos, 2009, 118, 809-818.	2.7	43
128	A tree in the jaws of a moth – temporal variation in oak leaf quality and leaf hewer performance. Oikos, 2009, 118, 1212-1218.	2.7	16
129	Some like it hot: microclimatic variation affects the abundance and movements of a critically endangered dung beetle. Insect Conservation and Diversity, 2009, 2, 232-241.	3.0	27
130	Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos, 2008, 117, 1659-1666.	2.7	58
131	Specialization pays off: contrasting effects of two types of tannins on oak specialist and generalist moth species. Oikos, 2008, 117, 1560-1568.	2.7	95
132	Caterpillars on the run – induced defences create spatial patterns in host plant damage. Ecography, 2008, 31, 335-347.	4.5	39
133	Four ways towards tropical herbivore megadiversity. Ecology Letters, 2008, 11, 398-416.	6.4	161
134	Spatial population structure of a specialist leafâ€mining moth. Journal of Animal Ecology, 2008, 77, 757-767.	2.8	25
135	Neither the devil nor the deep blue sea: larval mortality factors fail to explain the abundance and distribution of <i>Tischeria ekebladella</i> . Ecological Entomology, 2008, 33, 346-356.	2.2	12
136	Caterpillars on the run – induced defences create spatial patterns in host plant damage. Ecography, 2008, .	4.5	0
137	Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos, 2008, , .	2.7	0
138	A tree in the eyes of a moth ? temporal variation in oak leaf quality and leaf-miner performance. Oikos, 2007, 116, 592-600.	2.7	7
139	Up or down in space? Uniting the bottomâ€up versus topâ€down paradigm and spatial ecology. Oikos, 2007, 116, 181-188.	2.7	126
140	A tree in the eyes of a moth – temporal variation in oak leaf quality and leafâ€miner performance. Oikos, 2007, 116, 592-600.	2.7	29
141	Spatial population structure in an obligate plant pathogen colonizing oak <i>Quercus robur</i> . Functional Ecology, 2007, 21, 1168-1177.	3.6	41
142	Resource selection by female moths in a heterogeneous environment: what is a poor girl to do?. Journal of Animal Ecology, 2007, 76, 854-865.	2.8	55
143	Parasitoids on the loose - experimental lack of support of the parasitoid movement hypothesis. Oikos, 2006, 115, 277-285.	2.7	23
144	Seeing the trees for the leaves - oaks as mosaics for a host-specific moth. Oikos, 2006, 113, 106-120.	2.7	60

#	Article	IF	CITATIONS
145	Predicting immigration of two species in contrasting landscapes: effects of scale, patch size and isolation. Oikos, 2005, 111, 359-367.	2.7	25
146	RAPID RECOVERY OF DUNG BEETLE COMMUNITIES FOLLOWING HABITAT FRAGMENTATION IN CENTRAL AMAZONIA. Ecology, 2005, 86, 3303-3311.	3.2	102
147	Competitive effects of the forest tent caterpillar on the gallers and leaf-miners of trembling aspen. Ecoscience, 2005, 12, 172-182.	1.4	10
148	Seasonal Variation in the Content of Hydrolyzable Tannins, Flavonoid Glycosides, and Proanthocyanidins in Oak Leaves. Journal of Chemical Ecology, 2004, 30, 1693-1711.	1.8	200
149	Not so quiet on the high frontier. Trends in Ecology and Evolution, 2003, 18, 376-379.	8.7	2
150	Who said that size is all that matters?. Trends in Ecology and Evolution, 2002, 17, 10-11.	8.7	3
151	So near and yet so far – habitat fragmentation and bird movement. Trends in Ecology and Evolution, 2002, 17, 61.	8.7	4
152	Arboreal antics. Trends in Ecology and Evolution, 2002, 17, 254.	8.7	0
153	Herbivory passing the limits. Trends in Ecology and Evolution, 2002, 17, 355.	8.7	1
154	Explaining a little is often a lot. Trends in Ecology and Evolution, 2002, 17, 498.	8.7	1
155	Fishy behaviour. Trends in Ecology and Evolution, 2002, 17, 547.	8.7	0
156	Other mothers' ducklings–why look after them?. Trends in Ecology and Evolution, 2001, 16, 73-74.	8.7	0
157	Inbreeding in nature: brothers and sisters, do not unite!. Trends in Ecology and Evolution, 2001, 16, 225.	8.7	2
158	A letter from the frontier: forecasting species expansions. Trends in Ecology and Evolution, 2001, 16, 484.	8.7	0
159	Distribution and abundance of dung beetles in fragmented landscapes. Oecologia, 2001, 127, 69-77.	2.0	73
160	Spatial population structure in a patchily distributed beetle. Molecular Ecology, 2001, 10, 823-837.	3.9	32
161	Largeâ€scale spatial ecology of dung beetles. Ecography, 2001, 24, 511-524.	4.5	7
162	Large-scale spatial ecology of dung beetles. Ecography, 2001, 24, 511-524.	4.5	27

10

#	Article	IF	CITATIONS
163	Dung beetle movements at two spatial scales. Oikos, 2000, 91, 323-335.	2.7	84
164	Is <i>Aphodius contaminatus</i> (Herbst) (Coleoptera: Scarabaeidae) a threatened species in Finland?. Entomologica Fennica, 1998, 9, 79-84.	0.6	0
165	Evidence for geographic substructuring of mtDNA variation in the East European Hermit beetle (Osmoderma barnabita). Nature Conservation, 0, 19, 171-189.	0.0	12
166	Spatial location dominates over host plant genotype in structuring an herbivore community. Ecology, 0, , 100319061621033.	3.2	0
167	Evaluation of non-destructive DNA extraction protocols for insect metabarcoding: gentler and shorter is better. Metabarcoding and Metagenomics, 0, 6, .	0.0	10