Pedro Piedras Montilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3810546/publications.pdf

Version: 2024-02-01

516710 377865 1,847 37 16 citations h-index papers

g-index 37 37 37 1671 docs citations times ranked citing authors all docs

34

#	Article	IF	CITATIONS
1	Rapid Avr9- and Cf-9–Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell, 1999, 11, 273-287.	6.6	458
2	cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell, 2000, 12, 963-977.	6.6	387
3	Resistance Gene-Dependent Activation of a Calcium-Dependent Protein Kinase in the Plant Defense Response. Plant Cell, 2000, 12, 803-815.	6.6	253
4	Update on ureide degradation in legumes. Journal of Experimental Botany, 2006, 57, 5-12.	4.8	146
5	Rapid, Cf-9- and Avr9-Dependent Production of Active Oxygen Species in Tobacco Suspension Cultures. Molecular Plant-Microbe Interactions, 1998, 11, 1155-1166.	2.6	118
6	Functional, c-myc-tagged Cf-9 resistance gene products are plasma-membrane localized and glycosylated. Plant Journal, 2000, 21, 529-536.	5.7	51
7	Urea Is a Product of Ureidoglycolate Degradation in Chickpea. Purification and Characterization of the Ureidoglycolate Urea-Lyase. Plant Physiology, 2001, 125, 828-834.	4.8	45
8	Degradation of ureidoglycolate in French bean (Phaseolus vulgaris) is catalysed by a ubiquitous ureidoglycolate urea-lyase. Planta, 2006, 224, 175-184.	3.2	40
9	Uptake and metabolism of allantoin and allantoate by cells of Chlamydomonas reinhardtii (Chlorophyceae). European Journal of Phycology, 1998, 33, 57-64.	2.0	29
10	Cloning, characterization and mRNA expression analysis of PVAS1, a type I asparagine synthetase gene from Phaseolus vulgaris. Planta, 2001, 213, 402-410.	3.2	27
11	Allantoate Amidinohydrolase (Allantoicase) from Chlamydomonas reinhardtii: Its Purification and Catalytic and Molecular Characterization. Archives of Biochemistry and Biophysics, 2000, 378, 340-348.	3.0	26
12	Ureide metabolism during seedling development in French bean (<i>Phaseolus vulgaris</i>). Physiologia Plantarum, 2009, 135, 19-28.	5.2	24
13	Nuclease and ribonuclease activities in response to salt stress: Identification of PvRNS3, a T2/S-like ribonuclease induced in common bean radicles by salt stress. Plant Physiology and Biochemistry, 2020, 147, 235-241.	5.8	21
14	Tissue abundance and characterization of two purified proteins with allantoinase activity from French bean (Phaseolus vulgaris). Physiologia Plantarum, 2007, 131, 355-366.	5.2	20
15	Biochemical characterisation of an allantoate-degrading enzyme from French bean (Phaseolus) Tj ETQq $1\ 1\ 0.7843$	14 rgBT / 3.2	Overlock 10
16	Identification of a novel phosphatase with high affinity for nucleotides monophosphate from common bean (Phaseolus vulgaris). Plant Physiology and Biochemistry, 2012, 53, 54-60.	5.8	19
17	Utilization of adenine and guanine as nitrogen sources by Chlamydomonas reinhardtii cells. Plant, Cell and Environment, 1995, 18, 583-588.	5.7	16
18	Nucleases activities during French bean leaf aging and dark-induced senescence. Journal of Plant Physiology, 2017, 218, 235-242.	3.5	16

#	Article	IF	CITATIONS
19	A Continuous Spectrophotometric Assay for Ureidoglycolase Activity with Lactate Dehydrogenase or Glyoxylate Reductase as Coupling Enzyme. Analytical Biochemistry, 1994, 222, 450-455.	2.4	15
20	Purification and identification of a nuclease activity in embryo axes from French bean. Plant Science, 2014, 224, 137-143.	3.6	15
21	Solubilization and extraction of allantoinase and allantoicase from the green algaChlamydomonas reinhardtii. Phytochemical Analysis, 1995, 6, 239-243.	2.4	12
22	Early signalling events in the Avr9/Cf-9-dependent plant defence response. Molecular Plant Pathology, 2000, 1, 3-8.	4.2	12
23	Purification and characterization of an l-amino-acid oxidase from Chlamydomonas reinhardtii. Planta, 1992, 188, 13-8.	3.2	11
24	Relationship between ureidic/amidic metabolism and antioxidant enzymatic activities in legume seedlings. Plant Physiology and Biochemistry, 2019, 138, 1-8.	5.8	11
25	Rapid Avr9- and Cf-9-Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell, 1999, 11, 273.	6.6	10
26	Identification of nucleases related to nutrient mobilization in senescing cotyledons from French bean. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	10
27	Identification and characterization of a gene encoding for a nucleotidase from Phaseolus vulgaris. Journal of Plant Physiology, 2015, 185, 44-51.	3.5	9
28	Manganese is essential for activity of allantoate amidinohydrolase from Chlamydomonas reinhardtii. Plant Science, 2003, 165, 423-428.	3.6	6
29	An alternative pathway for ureide usage in legumes: enzymatic formation of a ureidoglycolate adduct in Cicer arietinum and Phaseolus vulgaris. Journal of Experimental Botany, 2011, 62, 307-318.	4.8	6
30	Resistance Gene-Dependent Activation of a Calcium-Dependent Protein Kinase in the Plant Defense Response. Plant Cell, 2000, 12, 803.	6.6	5
31	Biochemical and Molecular Characterization of PvNTD2, a Nucleotidase Highly Expressed in Nodules from Phaseolus vulgaris. Plants, 2020, 9, 171.	3.5	3
32	cDNA-AFLP Reveals a Striking Overlap in Race-Specific Resistance and Wound Response Gene Expression Profiles. Plant Cell, 2000, 12, 963.	6.6	2
33	Nucleoside Metabolism Is Induced in Common Bean During Early Seedling Development. Frontiers in Plant Science, 2021, 12, 651015.	3.6	2
34	S-Like Ribonuclease T2 Genes Are Induced during Mobilisation of Nutrients in Cotyledons from Common Bean. Agronomy, 2021, 11, 490.	3.0	2
35	HOW DO PLANTS RESIST MICROBIAL INFECTION?. Biochemical Society Transactions, 1996, 24, 519S-519S.	3.4	O
36	Purification, quantification and gene expression of urate oxidases in rust-infected bean leaves. Physiological and Molecular Plant Pathology, 2002, 61, 141-150.	2.5	0

#	Article	IF	CITATIONS
37	Methyl jasmonate elicitation of common bean seedlings induces nucleotidase activity and the expression of several nucleotidase genes in radicles. Biologia Plantarum, 0, 65, 246-254.	1.9	0