Gil Amitai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3810163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacterial gasdermins reveal an ancient mechanism of cell death. Science, 2022, 375, 221-225.	12.6	132
2	Bacteria deplete deoxynucleotides to defend against bacteriophage infection. Nature Microbiology, 2022, 7, 1200-1209.	13.3	58
3	Prokaryotic viperins produce diverse antiviral molecules. Nature, 2021, 589, 120-124.	27.8	172
4	Cyclic CMP and cyclic UMP mediate bacterial immunity against phages. Cell, 2021, 184, 5728-5739.e16.	28.9	156
5	Antiviral activity of bacterial TIR domains via immune signalling molecules. Nature, 2021, 600, 116-120.	27.8	159
6	Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems. Nature Microbiology, 2020, 5, 1608-1615.	13.3	160
7	Cyclic GMP–AMP signalling protects bacteria against viral infection. Nature, 2019, 574, 691-695.	27.8	370
8	Systematic discovery of antiphage defense systems in the microbial pangenome. Science, 2018, 359, .	12.6	776
9	Quantitative species-level ecology of reef fish larvae via metabarcoding. Nature Ecology and Evolution, 2018, 2, 306-316.	7.8	56
10	Communication between viruses guides lysis–lysogeny decisions. Nature, 2017, 541, 488-493.	27.8	465
11	Intracellular signaling in CRISPR-Cas defense. Science, 2017, 357, 550-551.	12.6	10
12	Repeat Size Determination by Two Molecular Rulers in the Type I-E CRISPR Array. Cell Reports, 2016, 16, 2811-2818.	6.4	27
13	Natural selection underlies apparent stress-induced mutagenesis in a bacteriophage infection model. Nature Microbiology, 2016, 1, 16047.	13.3	7
14	CRISPR–Cas adaptation: insights into the mechanism of action. Nature Reviews Microbiology, 2016, 14, 67-76.	28.6	324
15	CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature, 2015, 520, 505-510.	27.8	346
16	Self-targeting by CRISPR: gene regulation or autoimmunity?. Trends in Genetics, 2010, 26, 335-340.	6.7	353
17	Network Analysis of Protein Structures Identifies Functional Residues. Journal of Molecular Biology, 2004, 344, 1135-1146.	4.2	450
18	Distribution and function of new bacterial inteinâ€like protein domains. Molecular Microbiology, 2003, 47, 61-73.	2.5	59