
Christian Adam Olsen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3810002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On-Resin Peptide Cyclization Using the 3-Amino-4-(Methylamino)Benzoic Acid MeDbz Linker. Methods in Molecular Biology, 2022, 2371, 101-115.	0.9	0
2	Class I histone deacetylases (HDAC1–3) are histone lysine delactylases. Science Advances, 2022, 8, eabi6696.	10.3	141
3	Determination of Slow-Binding HDAC Inhibitor Potency and Subclass Selectivity. ACS Medicinal Chemistry Letters, 2022, 13, 779-785.	2.8	13
4	Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	16
5	Chiral Posttranslational Modification to Lysine ε-Amino Groups. Accounts of Chemical Research, 2022, 55, 1456-1466.	15.6	18
6	Mitochondria-targeted inhibitors of the human SIRT3 lysine deacetylase. RSC Chemical Biology, 2021, 2, 627-635.	4.1	11
7	Hydroxamic acid-modified peptide microarrays for profiling isozyme-selective interactions and inhibition of histone deacetylases. Nature Communications, 2021, 12, 62.	12.8	22
8	High-throughput screening of histone deacetylases and determination of kinetic parameters using fluorogenic assays. STAR Protocols, 2021, 2, 100313.	1.2	6
9	SIRT5 Is a Druggable Metabolic Vulnerability in Acute Myeloid Leukemia. Blood Cancer Discovery, 2021, 2, 266-287.	5.0	37
10	Zn2+-Dependent Histone Deacetylases in Plants: Structure and Evolution. Trends in Plant Science, 2021, 26, 741-757.	8.8	19
11	Rearrangement of Thiodepsipeptides by S → N Acyl Shift Delivers Homodetic Autoinducing Peptides. Journal of the American Chemical Society, 2021, 143, 10514-10518.	13.7	5
12	The Chemical Biologyâ€Medicinal Chemistry Continuum: EFMC′s Vision. ChemBioChem, 2021, 22, 2823-2825.	2.6	7
13	Mechanism-based inhibitors of SIRT2: structure–activity relationship, X-ray structures, target engagement, regulation of α-tubulin acetylation and inhibition of breast cancer cell migration. RSC Chemical Biology, 2021, 2, 612-626.	4.1	23
14	Photo Crossâ€Linking Probes Containing ϵâ€ <i>N</i> â€Thioacyllysine and ϵâ€ <i>N</i> â€Acylâ€(δâ€aza)lysine R Chemistry - A European Journal, 2020, 26, 3862-3869.	esidues. 3.3	14
15	Increasing the Functional Group Diversity in Helical β-Peptoids: Achievement of Solvent- and pH-Dependent Folding. Journal of Organic Chemistry, 2020, 85, 10466-10478.	3.2	2
16	Peptide Inhibitors of the α-Cobratoxin–Nicotinic Acetylcholine Receptor Interaction. Journal of Medicinal Chemistry, 2020, 63, 13709-13718.	6.4	15
17	Dethioacylation by Sirtuins 1–3: Considerations for Drug Design Using Mechanism-Based Sirtuin Inhibition. ACS Medicinal Chemistry Letters, 2020, 11, 1886-1892.	2.8	15
18	Finding the gas pedal on a slow sirtuin. Journal of Biological Chemistry, 2020, 295, 1400-1401.	3.4	0

#	Article	IF	CITATIONS
19	Finding the gas pedal on a slow sirtuin. Journal of Biological Chemistry, 2020, 295, 1400-1401.	3.4	1
20	Arylfluorsulfatâ€basierte Elektrophile für die kovalente Proteinmarkierung. Angewandte Chemie, 2019, 131, 969-978.	2.0	27
21	Arylfluorosulfateâ€Based Electrophiles for Covalent Protein Labeling: A New Addition to the Arsenal. Angewandte Chemie - International Edition, 2019, 58, 957-966.	13.8	109
22	Kinetic Tuning of HDAC Inhibitors Affords Potent Inducers of Progranulin Expression. ACS Chemical Neuroscience, 2019, 10, 3769-3777.	3.5	16
23	Effect of Co-inhabiting Coagulase Negative Staphylococci on S. aureus agr Quorum Sensing, Host Factor Binding, and Biofilm Formation. Frontiers in Microbiology, 2019, 10, 2212.	3.5	27
24	Identification of autoinducing thiodepsipeptides from staphylococci enabled by native chemical ligation. Nature Chemistry, 2019, 11, 463-469.	13.6	41
25	Functionalized Helical Î ² -Peptoids. Journal of Organic Chemistry, 2019, 84, 3762-3779.	3.2	15
26	Hydroxamic Acid-Containing Peptides in the Study of Histone Deacetylases. Topics in Medicinal Chemistry, 2019, , 29-54.	0.8	0
27	Histone Deacetylase 11 Is an ε-N-Myristoyllysine Hydrolase. Cell Chemical Biology, 2018, 25, 849-856.e8.	5.2	98
28	Random Mutagenesis Analysis of the Influenza A M2 Proton Channel Reveals Novel Resistance Mutants. Biochemistry, 2018, 57, 5957-5968.	2.5	11
29	Synthesis of Trifluoromethyl Ketone Containing Amino Acid Building Blocks for the Preparation of Peptide-Based Histone Deacetylase (HDAC) Inhibitors. Synthesis, 2018, 50, 4037-4046.	2.3	7
30	A Robust Proton Flux (pHlux) Assay for Studying the Function and Inhibition of the Influenza A M2 Proton Channel. Biochemistry, 2018, 57, 5949-5956.	2.5	15
31	Targeting Sirtuins: Substrate Specificity and Inhibitor Design. Progress in Molecular Biology and Translational Science, 2018, 154, 25-69.	1.7	32
32	Direct Peptide Cyclization and One-Pot Modification Using the MeDbz Linker. Journal of Organic Chemistry, 2018, 83, 10525-10534.	3.2	26
33	An NAD ⁺ -Dependent Sirtuin Depropionylase and Deacetylase (Sir2La) from the Probiotic Bacterium <i>Lactobacillus acidophilus</i> NCFM. Biochemistry, 2018, 57, 3903-3915.	2.5	12
34	Cyclic tetrapeptide HDAC inhibitors as potential therapeutics for spinal muscular atrophy: Screening with iPSC-derived neuronal cells. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3289-3293.	2.2	25
35	SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion. Cell Metabolism, 2017, 25, 838-855.e15.	16.2	259
36	Backbone-Fluorinated 1,2,3-Triazole-Containing Dipeptide Surrogates. Journal of Organic Chemistry, 2017, 82, 11613-11619.	3.2	10

#	Article	IF	CITATIONS
37	Structure–Activity Relationship Study Based on Autoinducing Peptide (AIP) from Dog Pathogen <i>S. schleiferi</i> . Organic Letters, 2017, 19, 5276-5279.	4.6	22
38	Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 991-998.	1.0	138
39	Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie, 2017, 129, 15032-15037.	2.0	7
40	Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie - International Edition, 2017, 56, 14836-14841.	13.8	62
41	Chemical Editing of Macrocyclic Natural Products and Kinetic Profiling Reveal Slow, Tight-Binding Histone Deacetylase Inhibitors with Picomolar Affinities. Biochemistry, 2017, 56, 5134-5146.	2.5	29
42	Frontispiece: Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie - International Edition, 2017, 56, .	13.8	0
43	Scalable and Purification-Free Synthesis of a Myristoylated FluoroÂgenic Sirtuin Substrate. Synlett, 2017, 28, 2169-2173.	1.8	6
44	Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. ChemBioChem, 2017, 18, 5-49.	2.6	37
45	Frontispiz: Mechanismâ€Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure–Activity Relationship, Biostructural, and Kinetic Insight. Angewandte Chemie, 2017, 129, .	2.0	0
46	Cross-Talk between Staphylococcus aureus and Other Staphylococcal Species via the agr Quorum Sensing System. Frontiers in Microbiology, 2016, 7, 1733.	3.5	67
47	The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions. PLoS ONE, 2016, 11, e0145618.	2.5	31
48	Innovative Strategies for Selective Inhibition of Histone Deacetylases. Cell Chemical Biology, 2016, 23, 759-768.	5.2	50
49	Lipids Reprogram Metabolism to Become a Major Carbon Source for Histone Acetylation. Cell Reports, 2016, 17, 1463-1472.	6.4	266
50	A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay: Substrate Screening and Inhibitor Evaluation. Journal of Medicinal Chemistry, 2016, 59, 1021-1031.	6.4	46
51	Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH. Journal of Biological Chemistry, 2016, 291, 7128-7141.	3.4	91
52	An acetylation photoswitch. Nature Chemical Biology, 2016, 12, 306-307.	8.0	4
53	A potent trifluoromethyl ketone histone deacetylase inhibitor exhibits class-dependent mechanism of action. MedChemComm, 2016, 7, 464-470.	3.4	22
54	Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds. Nature Communications, 2015, 6, 7013.	12.8	72

#	Article	IF	CITATIONS
55	β-Peptoid Foldamers at Last. Accounts of Chemical Research, 2015, 48, 2696-2704.	15.6	95
56	Effects of Thionation and Fluorination on Cis–Trans Isomerization in Tertiary Amides: An Investigation of <i>N</i> -Alkylglycine (Peptoid) Rotamers. Journal of Organic Chemistry, 2015, 80, 5415-5427.	3.2	23
57	Methyl Effect in Azumamides Provides Insight Into Histone Deacetylase Inhibition by Macrocycles. Journal of Medicinal Chemistry, 2014, 57, 9644-9657.	6.4	20
58	An Update on Lysine Deacylases Targeting the Expanding "Acylome― ChemMedChem, 2014, 9, 434-437.	3.2	22
59	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	16.2	647
60	The Effect of Various Zinc Binding Groups on Inhibition of Histone Deacetylases 1–11. ChemMedChem, 2014, 9, 614-626.	3.2	52
61	An azumamide C analogue without the zinc-binding functionality. MedChemComm, 2014, 5, 1849-1855.	3.4	16
62	Guanidino groups greatly enhance the action of antimicrobial peptidomimetics against bacterial cytoplasmic membranes. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2492-2502.	2.6	58
63	Total synthesis and structural validation of cyclodepsipeptides solonamide A and B. Tetrahedron, 2014, 70, 7721-7732.	1.9	21
64	Total Synthesis and Full Histone Deacetylase Inhibitory Profiling of Azumamides A–E as Well as β ² - <i>epi</i> -Azumamide E and β ³ - <i>epi</i> -Azumamide E. Journal of Medicinal Chemistry, 2013, 56, 6512-6520.	6.4	32
65	<i>Cis</i> – <i>Trans</i> Amide Bond Rotamers in β-Peptoids and Peptoids: Evaluation of Stereoelectronic Effects in Backbone and Side Chains. Journal of the American Chemical Society, 2013, 135, 2835-2844.	13.7	122
66	Substrates for Efficient Fluorometric Screening Employing the NAD-Dependent Sirtuin 5 Lysine Deacylase (KDAC) Enzyme. Journal of Medicinal Chemistry, 2012, 55, 5582-5590.	6.4	66
67	Profiling of Substrates for Zincâ€dependent Lysine Deacylase Enzymes: HDAC3 Exhibits Decrotonylase Activity Inâ€Vitro. Angewandte Chemie - International Edition, 2012, 51, 9083-9087.	13.8	90
68	Macrocyclic Peptoid–Peptide Hybrids as Inhibitors of Class I Histone Deacetylases. ACS Medicinal Chemistry Letters, 2012, 3, 749-753.	2.8	34
69	Discovery of HDAC Inhibitors That Lack an Active Site Zn ²⁺ -Binding Functional Group. ACS Medicinal Chemistry Letters, 2012, 3, 505-508.	2.8	47
70	Expansion of the Lysine Acylation Landscape. Angewandte Chemie - International Edition, 2012, 51, 3755-3756.	13.8	80
71	Potential Agents for Treating Cystic Fibrosis: Cyclic Tetrapeptides That Restore Trafficking and Activity of I"F508-CFTR. ACS Medicinal Chemistry Letters, 2011, 2, 703-707.	2.8	27
72	Small Molecules from Spiders Used as Chemical Probes. Angewandte Chemie - International Edition, 2011, 50, 11296-11311.	13.8	19

#	Article	IF	CITATIONS
73	βâ€peptoid "Foldamersâ€â€"Why the additional methylene unit?. Biopolymers, 2011, 96, 561-566.	2.4	37
74	Peptoid–Peptide Hybrid Backbone Architectures. ChemBioChem, 2010, 11, 152-160.	2.6	73
75	Antimicrobial, Hemolytic, and Cytotoxic Activities of βâ€Peptoid–Peptide Hybrid Oligomers: Improved Properties Compared to Natural AMPs. ChemBioChem, 2010, 11, 1356-1360.	2.6	80
76	Inside Cover: Peptoid-Peptide Hybrid Backbone Architectures (ChemBioChem 2/2010). ChemBioChem, 2010, 11, 134-134.	2.6	1
77	Inside Cover: Antimicrobial, Hemolytic, and Cytotoxic Activities of β-Peptoid-Peptide Hybrid Oligomers: Improved Properties Compared to Natural AMPs (ChemBioChem 10/2010). ChemBioChem, 2010, 11, 1310-1310.	2.6	0
78	Assessment of Structurally Diverse Philanthotoxin Analogues for Inhibitory Activity on Ionotropic Glutamate Receptor Subtypes: Discovery of Nanomolar, Nonselective, and Use-Dependent Antagonists. Journal of Medicinal Chemistry, 2010, 53, 7441-7451.	6.4	22
79	Selectively <i>N</i> â€Protected Enantiopure 2,5â€Disubstituted Piperazines: Avoiding the Pitfalls in Solidâ€Phase Fukuyama–Mitsunobu Cyclizations. Chemistry - A European Journal, 2009, 15, 2966-2978.	3.3	22
80	Probing the Bioactive Conformation of an Archetypal Natural Product HDAC Inhibitor with Conformationally Homogeneous Triazoleâ€Modified Cyclic Tetrapeptides. Angewandte Chemie - International Edition, 2009, 48, 4718-4724.	13.8	141
81	Design, Synthesis, Biological Evaluation, and Structural Characterization of Potent Histone Deacetylase Inhibitors Based on Cyclic α/β-Tetrapeptide Architectures. Journal of the American Chemical Society, 2009, 131, 3033-3041.	13.7	78
82	Discovery of Potent and Selective Histone Deacetylase Inhibitors via Focused Combinatorial Libraries of Cyclic α ₃ β-Tetrapeptides. Journal of Medicinal Chemistry, 2009, 52, 7836-7846.	6.4	73
83	Cellular uptake and membrane-destabilising properties of α-peptide/β-peptoid chimeras: lessons for the design of new cell-penetrating peptides. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778, 2487-2495.	2.6	55
84	Dimeric Building Blocks for Solid-Phase Synthesis of α-Peptide-β-Peptoid Chimeras. Synthesis, 2008, 2008, 2381-2390.	2.3	19
85	α-Peptide/β-Peptoid Chimeras. Organic Letters, 2007, 9, 1549-1552.	4.6	83
86	Antiplasmodial and Prehemolytic Activities of αâ€Peptide–βâ€Peptoid Chimeras. ChemBioChem, 2007, 8, 1781-1784.	2.6	41
87	Aziridines in Parallel―and Solidâ€Phase Synthesis. European Journal of Organic Chemistry, 2007, 2007, 1717-1724.	2.4	34
88	Solid-phase synthesis of neuroactive spider–wasp hybrid toxin analogues using a backbone amide linker. Tetrahedron Letters, 2007, 48, 405-408.	1.4	15
89	Aminolysis of Resin-BoundN-Nosylaziridine-2-carboxylic Acids. Organic Letters, 2006, 8, 3371-3374.	4.6	26
90	Synthesis and Structureâ^'Activity Relationship Study of Potent Cytotoxic Analogues of the Marine Alkaloid Lamellarin D. Journal of Medicinal Chemistry, 2006, 49, 3257-3268.	6.4	100

#	Article	IF	CITATIONS
91	Tuning Wasp Toxin Structure for Nicotinic Receptor Antagonism: Cyclohexylalanine-Containing Analogues as Potent and Voltage-Dependent Blockers. ChemMedChem, 2006, 1, 303-305.	3.2	13
92	5,6-Dihydropyrrolo[2,1-b]isoquinolines as scaffolds for synthesis of lamellarin analogues. Tetrahedron Letters, 2005, 46, 2041-2044.	1.4	41
93	Fukuyama–Mitsunobu alkylation in amine synthesis on solid phase revisited: N-alkylation with secondary alcohols and synthesis of curtatoxins. Tetrahedron, 2005, 61, 6046-6055.	1.9	22
94	N-Alkylation Reactions and Indirect Formation of Amino Functionalities in Solid-Phase Synthesis. Synthesis, 2005, 2005, 2631-2653.	2.3	33
95	The Effects of Conformational Constraints and Steric Bulk in the Amino Acid Moiety of Philanthotoxins on AMPAR Antagonism. Journal of Medicinal Chemistry, 2005, 48, 56-70.	6.4	28
96	Side-Chain-AnchoredNα-Fmoc-Tyr-OPfp for Bidirectional Solid-Phase Synthesis. Organic Letters, 2005, 7, 1703-1706.	4.6	12
97	Modular Total Synthesis of Lamellarin D. Journal of Organic Chemistry, 2005, 70, 8231-8234.	3.2	108
98	Diols as Building Blocks in Solid-Phase Synthesis of Polyamine Toxins by Fukuyama-Mitsunobu Alkylation. Synlett, 2004, 2004, 473-476.	1.8	1
99	Solid-Phase Synthesis of Rigid Acylpolyamines Using TemporaryN-4,4â€~-Dimethoxytrityl Protection in the Presence of Trityl Linkers. Journal of Organic Chemistry, 2004, 69, 6149-6152.	3.2	23
100	Expedient Protocol for Solid-Phase Synthesis of Secondary and Tertiary Amines. Organic Letters, 2004, 6, 1935-1938.	4.6	20
101	Solid-Phase Polyamine Synthesis Using Piperazine and Piperidine Building Blocks. Organic Letters, 2003, 5, 4183-4185.	4.6	19
102	Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme**. Angewandte Chemie, 0, , .	2.0	2